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In this study, we consider two coupled pendulums (attached together with a
spring) having the same length while the same masses are attached atdkeiffter
setting the system in motion we construct the classical Lagrangian, andessilg
we obtain the classical Euler-Lagrange equation. Then, we generadizelassical
Lagrangian in order to derive the fractional Euler-Lagrange equatithe sense of two
different fractional operators. Finally, we provide the numerical tsmhuof the latter
equation for some fractional orders and initial conditions. The methaased is based
on the Euler method to discretize the convolution integral. Numerical simusasioow
that the proposed approach is efficient and demonstrate new aspéutsreal-world
phenomena.

Key words Two coupled pendulums, Euler-Lagrange equation, fractional
derivative, Euler method.

1. INTRODUCTION

Lagrangian Mechanics is a powerful method used in analyzing physisal s
tems appeared especially in classical mechanics. This method is basedrarirdete
ing scalar quantities related to the systdarm. (kinetic and potential energies). In
classical texts, one can find many exciting physical systems that havesbkend
via this method [1-3].

The main idea of the Lagrangian method is obtaining the so-called equations
of motion by applying Euler-Lagrange equation to the Lagrangian of thersydn
general, the obtained equations are of second-order and one hégetthsm. In a
few cases, the analytical solution is obtained while in many cases analytigibso
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is difficult to obtain. In these cases, we turn to use numerical techniqu@g [4

Fractional calculus has a long history and its origin goes back to abowet thre
hundred years. It was believed that this branch of mathematics has lcaéipps.

The last thirty years showed that in the real-world systems the fractiolcales can
play an efficient role in analyzing these systems especially when numermaty
are required [8-24].

Classical mechanics is a branch of physics where the fractional calcatus
been widely applied. The first attempt to study systems within fractional bgga
and fractional Hamiltonian was carried out by Riewe [25, 26]. Later omyma-
searchers followed Riewe’s work [27—-29]. In these works, thearebers described
the systems of interests by the fractional Lagrangian or the fractional Hamitto
and as a result, the fractional Euler-Lagrange equations (FELEskedrabtional
Hamilton equations are derived for the considered problems.

The obtained fractional equations cannot be solved analytically so easily in
many cases; therefore, we seek for the numerical schemes usetifiog $actional
differential equations (FDEs). These methods include th@n®ald-Letnikov ap-
proximation [8], decomposition method [30-33], variational iteration methdd [3
Adams-Bashforth-Moulton technique [35], etc.

The rest of this work is organized as follows. In Sect. 2 some preliminaries
concerning the fractional derivatives are presented. In Sect. Jlaélssical and
fractional studies have been carried out for the two coupled pendulw@utio8 4
provides numerical solutions of the derived FELE for different valfesactional
order and initial conditions. Finally, we close the paper by a conclusiondh Se

2. BASIC DEFINITIONS AND PRELIMINARIES

In this Section, we give in brief some preliminaries concerning the fractional
derivatives. There are some definitions of the fractional derivaiinesding Riema-
nn-Liouville, Weyl, Caputo, Marchaud, and Riesz [8]. Moreover, & frectional
derivative with Mittag-Leffler nonsingular kernel (ABC) was proposecently and
applied to some real-world models [36]. Below, we define the fractionalateres
in terms of classic Caputo and ABC. Starting with the classic Caputo, we ptesen
following definitions.

Definition 2.1. [8] Let z : [a,b] — R be a time-dependent function. Then, the left
and right Caputo fractional derivatives are defined as

t
Cpra . A 1 x(n)(&-)
aDtx_F(na)/(t_g)H-a—ndf’ (1)
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respectively, wher€'(-) denotes the Euler's Gamma function andepresents the
fractional derivative order such that—1 < o < n.

Definition 2.2. [36] For g € H'(a,b) and0 < a < 1, the left and right ABC frac-
tional derivatives are defined as

t
202 2 [, (<ol giegae @
B / @
12 -7 [, (<ol ) geerae @
t

respectively, wher@(«) is a normalization function obeying(0) = B(1) =1 and
the symbolF,, denotes the generalized Mittag-Leffler function
00 k
t

Eo(t) = ;OW (5)

For more details on the new ABC fractional operator and its properties, the
interested reader can refer to [36, 37].

3. DESCRIPTION OF THE TWO COUPLED PENDULUM

3.1. CLASSICAL DESCRIPTION

Consider two identical pendulums of lengthd&nd mass:) coupled together
with a spring stiffnessk) and hang as shown in Fig. 1 below [1]. In our system we
consider the following two assumptions: firstly, the spring is connected agltyp
the pendulums, and secondly, the spring is massless. Also, as it is cleaFifjol,

A, > 0 while #; < 0. As a result, the kinetic energ¥} of the system reads

mi? o o
7= (02+63). (6)
while the potential energy takes the form
V=Vnc+ Ve, (7)

whereVy ¢ is the potential energy with no coupling spring between the pendulums,
and it reads

l
Vive = - (6 +63), ®)
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Fig. 1 —-Two coupled pendulums.

and V¢ is the potential energy due to the coupling spring, and this term takes the
form

VC—I;<;)2(02—01)2. 9)

Therefore, the classical Lagrangian is

mi2 /. o\ mgl o k(12 )
To obtain the classical equations of motion of our system, we use Eqg. (dGhan
following equation

OL d JL
ity ) 11
dq;  dt 0¢; (D
Thus, forg; = 61, we have
. g k
J (0 —05) = 12
«91+l91+4m(91 02) =0, (12)
while for g5 = 65 we obtain
. g k B
0o + leg + m (02 91) =0. (13)
We can simplify the above two equations by introducing the dimensionless cguplin

parameter, wheren = 4];1—[9, and letwg = \/% As a result, the above equations

read

01 +wi(1+n)01 —nwabs =0, (14)

0y + w3 (1+1)0y —nuwié; = 0. (15)
These two equations are a set of coupled second-order linear difigrequations.
If n =0 (i.e. no coupling spring), we have two independent oscillating systems each

of frequencyw, = \/%
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3.2. FRACTIONAL DESCRIPTION

Now, we will pay attention to the fractional case. The first step is fractionaliz
ing Eq. (10). Thus, the fractional Lagrangian has the form

12 l k(1\>
L7 = T ((DP00)? + (aDf2)*) = T (63 +63) — 5 (2> (02~ 6:). (16)

Using the following equatior%Lq—j +tD§% + D¢ t%%; =0 and Eqg. (16), one
can obtain the following two fractional equations of motion o= 6, andgs = 65),

respectively

+ D (o D&01) — wi(1+n)01 +nwibs =0, (17)

1D (o D02) +wi (1 +n)02 —nwity = 0. (18)

Finally, asae — 1 the fractional equations of motiond. Egs. (17)-(18)) are reduced
to the classical equations of motion defined in Egs. (14)-(15). In theSention,

we are aiming to obtain the numerical solution for the fractional equations of motio
for some initial conditions.

4. NUMERICAL SIMULATIONS

In this Section, an efficient numerical method is developed for solving the FE
LEs (17)-(18). For comparison purposes, the fractional operatbese equations is
considered in the sense of Caputo or ABC. To provide the proposedhsghwve first
reformulate Egs. (17)-(18) in the way below. Suppose that new vasialpéedefined
asf; = ,D0; andf, = ,D*6,. Then, Egs. (17)-(18) can be rewritten in the form
of a system of fractional differential equations

anel — élu
¢ D01 = ug%(l +n)61 — TITU[%QQ; (19)
oDt = 03,

D01 = —wi(1+n)02 + nwiby.

Equation (19) is converted into the following fractional integral equatigrstesn
by using the definition of fractional integral in the ABC sense [36] andimagsy
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Now, let us consider a uniform partition ¢, b] with the time step length = b]_\,a,

in which N is a positive integer. Supposg = a + kh is the time at node: for

0< k< N andd, x,0;  for i = 1,2 are the numerical approximationstfty, ), 0; (14 ),

respectively. Then, by using the Euler method to discretize the convolutiegrais
in Eq. (20), a system of linear algebraic equations is obtained

01— Hy 061 =61y,
01— Py (wi(l+n)01 —nuwiBs) =0,

\ 1)
O3 — Hy O3 =09,
O — Py (—wd(l+n)O2+nuwi©:) =0,
where
ti0 0: 0 ti0
Oi=| : [,6i=| : |, 0= : |, i=12 (22)
0 N 0; N 0.0
11—«
Hy o = I By o, 23
N = B N+1+ BB (23)
l—«o (o
Pno= I —BL . 24
N, Bla) N+1+B(a) N,a (24)
woya 0 0
BN,a _pe 0.)1.7a .. .. . ’ (25)
WNa --- Wiha Woa
k—1
woa =1, wpa= (T k=1,2,.... (26)

k
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Fig. 2 -Dynamics off; (t) andd.(t) within two different fractional derivative operators
whena = 0.9, m =0.2,1 =1, k = 100, g = 9.81, 6, (0) = 5 andf(0) = 0.
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Fig. 3 —Dynamics off; (t) andf.(¢) within two different fractional derivative operators

whena =0.95,m=0.2,1=1, k =100, g = 9.81, 6, (0) = 5 andf(0) = 0.
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Fig. 4 -Dynamics off; (t) andd.(t) within two different fractional derivative operators

whena =1,m=0.2,1=1, k=100, g = 9.81, ;(0) = 5 andf(0) = 0.

Note that, using the Caputo fractional integral [8] instead of the ABC in @) (
and the repetition of the discretization process above, the results canémigeed
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Fig. 5 —Dynamics off; (t) andd.(t) within two different fractional derivative operators
whena = 0.9, m =0.2,1 =1, k =100, g = 9.81, 6, (0) = 5 andf(0) = —5.
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Fig. 6 —Dynamics off; (t) andd.(t) within two different fractional derivative operators
whena = 0.95,m =0.2,1 =1, k =100, g = 9.81, 6;(0) = 5 andf,(0) = —5.
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Fig. 7 —Dynamics off; (t) andd,(t) within two different fractional derivative operators
whena=1,m=0.2,1=1, k=100, g = 9.81, 6, (0) = 5 andf,(0) = —5.

to the Caputo derivative case.
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whena =0.95,m =0.2,1 =1, k =10, g = 9.81, 6;(0) = 5 andf(0) = 0.
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Fig. 10 -Dynamics of¢, (¢) andf,(t) within two different fractional derivative operators
whena=1,m=0.2,1=1,k =10, g=9.81,6,(0) = 5 andf(0) = 0.

4.1. NUMERICAL SIMULATIONS RESULTS

In this Section, we examine the dynamic behaviorg,@¢t) andé,(¢) within
two different fractional operators as well as different values dftiomal derivative
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these figures, the numerical response of the Euler-Lagrange equd¢ipands on the
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values of derivative order. Also, these equations have different dynamic behaviors
for different fractional derivative operators. Therefore, takimgp account the new
definitions of the fractional derivatives leads to finding more flexible matietshelp

us to better understand the complex behaviors of the real-world systems.

5. CONCLUSIONS

In this work, we investigated the model of two coupled pendulums by using
the fractional Lagrangian. For this aim, we generalized the classicahhgizn to
the fractional case and derived the FELEs in the Caputo and ABC s&hse, we
solved the proposed models within these two fractional operators by usingeri-
cal method based on the discretization of convolution integral by the Euteple
tion quadrature rule. The results reported in Figs. 2-13 indicated thaetie/iors
of the FELEs depend on the fractional operators. Thus, the recendstigated fea-
tures of the fractional calculus provide more realistic models that help ugustad
better the dynamical behaviours of the real-world phenomena.
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