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A B S T R A C T

In the present work, the lattice Green’s function technique has been used to investigate the equivalent two-site
resistance between arbitrary pairs of lattice sites in infinite, generalized decorated square and simple cubic
lattices with identical resistors. Some results for the resistance are presented. The results for the generalized
decorated square lattice are numerically confirmed by commercial software (National Instruments software
Multisim). The asymptotic values of the resistance for the generalized decorated simple cubic lattice are cal-
culated numerically when the separation of the two lattice points goes to infinity.

Introduction

Infinite and finite resistive lattices have aroused the interest of nu-
merous researchers in the past more than twenty years because they can be
employed to model electrical systems as well as non-electrical systems al-
though the analyzing and modeling of the electrical circuits were for-
mulated by Kirchhoff more than 170 years ago [1]. As a real example, the
resistor network of graphene has been investigated by Andre Geim and
Konstantin Novoselov [2], which shows that the resistor network model is
real and important in theoretical research and practical applications.

Various theoretical methods have been established in literature in
calculating the resistance of infinite resistor lattice structures [3–6].
Venezian [4] studied the two-point resistance on an infinite square
lattice based on the principle of the superposition of current distribu-
tions. By using complex Fourier transforms Atkinson and van Steenwijk
[5] illuminated the method of Venezian and generalized it to infinite
cubic and hypercubic lattices in three and more dimensions, as well as
to infinite triangular and hexagonal lattices in two dimensions.

In [6], Cserti has used Green’s function method to calculate the re-
sistance for several infinite lattice structures of resistors. In [7], Cserti et al.
have presented a general theory based on the Green’s function for calcu-
lating two-point resistances in infinite d-dimensional uniform tilings with
resistors. Based on this method considerable works has been performed to
determine the resistance between two arbitrary lattice sites in infinite lat-
tices of various topologies [8–14]. In [15] Kirkpatrick used the Green’s
function method to study the transport in inhomogeneous conductors and

the percolation in random lattice networks.
The Green function is an important mathematical tool in several

areas of theoretical physics. It provides, for example, an efficient
method for solving linear problems involving a differential equation. An
excellent introduction to Green function and various applications can
be found in Refs. [16–18].

Lattice Green functions appear in several problems in condensed matter
physics, such as lattice vibration problems, luminescence, diffusion in solids
and the dynamics of spin waves [19]. They are also used in statistical
physics (theory of random walks) [20], theories of impurities in solids [21]
and to the calculation of the capacitance of capacitor networks [22,23]. The
Green's functionmethod can be a very efficient way to study several types of
defects, including a broken resistor (or capacitor), a replaced resistor (or
capacitor) and an extra resistor (or capacitor) between two nonconnected
lattice sites [24–32]. One of most popular models used to evaluate the
lattice Green functions are the elliptic integrals or recurrence relations
methods [33–42]. Such as application of Mahler measure theory to the face-
centered cubic lattice Green function [33], and exact results for the diamond
lattice Green function [34].

For finite resistor networks, different methods have been established,
such as the Laplacian matrix approach [43–46], the recursion-transform
method [47–53], and the equivalent transformation methods [54,55].

It is well-known that the connection between the electrical networks and
randomwalks is the two-point resistance on an electrical network [3]. Many
quantities of interests to know about random walks are first passage time
and commute times can be calculated by the two-point resistance [56,57].
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In this paper, we follow the general Green’s function theory pre-
sented in [7] to compute the effective resistance between any two of the
lattice sites of infinite, generalized decorated square and simple cubic
lattices of identical resistors, which have not been studied in the lit-
erature.

We believe that the Green’s function method is a highly effective
technique for the present problem, even in cases when other methods
face extreme difficulties [3–5]. Further, this problem can be used in
advanced mathematical methods course for undergraduate students in
physics, and would provide an educational example for introducing the
theory of Green’s function, as well as other basic concepts (such as the
unit cell, reciprocal lattice and the Brillouin zone) used in solid state
physics. Another motivation is to computationally confirm the theore-
tical results. Such confirmation is applicable due to the difficulty of
solving the problem by other methods [3–5].

The rest of the paper is organized as follows. In Section 2, the
general theory of an infinite d- dimensional regular resistor network
presented in Ref. [7] is briefly reviewed. The effective two-site re-
sistance on infinite, generalized decorated square and simple cubic
lattices with identical resistors are studied in Sections 3 and 4, re-
spectively. A brief conclusion is given in Section 5.

A brief review of the general theory of an infinite periodic resistor
lattice

In this section, we briefly recall the general theory given in Ref. [7]
to compute the effective resistance between any two lattice sites in an
infinite resistor lattice structure that is periodic tiling of d-dimensional
space with resistors. Readers are referred to the Ref. [7] for detailed
description of this method.

Consider an infinite lattice structure that is a uniform tiling of d-
dimensional space with identical resistors R. The lattice point can be
represented by the vector = =r api

d
i i1 , where ai are the unit cell vec-

tors in the d-dimensional space and pi are arbitrary integers. If the unit
cell contains s lattice points labeled = s1 , 2, ···, , then denote by r{ ; }
any lattice point, where r and α specify the unit cell and the lattice
point, and let rU ( ) and rI ( ) be the electric potential and current at
lattice site r{ ; } respectively.

The electric potential and current at lattice site r{ ; } in the d-di-
mensional real space can be represented by their Fourier transforms as
the following.
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where Vc is the volume of the unit cell and k is the wave vector in the d-
dimensional Fourier space (in the reciprocal lattice) and is confined to
the first Brillouin zone (BZ) which is a d-dimensional hypercube with
sides =k a2 /i i.

According to Kirchhoff’s and Ohm’s laws, the currents entering the
sites {r;1}, {r;2}, …, {r;s} in a one unit cell can be written formally in
the matrix notation as.

=LU I (2)

where L is a s by s matrix usually called Laplacian matrix of the lattice,
U r( ) and I r( ) are s by one column matrices:
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In order to calculate the effective resistance rR ( ) between the
orgin 0{ ; } and the site r{ ; } we connect these sites to the two term-
inals of a battery and measure the current I going through the battery
while no other sites are connected to batteries. Then, according Ohm’s

law the desired resistance rR ( ) is given by,

=r rR
I

U U0( ) 1 [ ( ) ( )] (4)

The computation of the two-site resistance requires solving Eq. (4)
for U 0( ) and rU ( ) with the current distribution given by,

=rI I( ) ( )r r r0, , , , (5)

The lattice Green’s function, is also known resolvant matrix, is
formally defined as,

=G L 1 (6)

Hence, Eq. (2) can be written as,

=r r r rU G I( ) ( , ) ( )
r

µ µ
, (7a)

Substituting Eq. (5) into Eq. (7a) gives,

=r r r rU I G G( ) [ ( , 0) ( , )]µ µ µ (7b)

Using Eq. (7b) in (4), the resistance in terms of lattice Green’s
functions can be obtained as,

= +r r rR G G G G0 0( ) ( ) ( ) ( ) ( ) (8)

where the lattice Green’s function rG ( ) can be given by its Fourier
transform kG ( ) as
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By making the transformations = =k a i d· ( 1, 2, ..., )i i and sub-
stituting Eq. (9b) into (8), the general expression for the two-site re-
sistance can be written as follows:
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Generalized decorated square lattice

The well- studied decorated square lattice [58] is formed by in-
troducing extra site in the middle of each side of a square lattice. Each
line between a pair of sites represents a resistor. Here, we compute the
two-site resistance on the generalized decorated square lattice obtained
by introducing a resistor between the decorating sites (see Fig. 1). In
Ref. [59], the antiferromagnetic Potts model has been studied on the
generalized decorated square lattice. In each unit cell there are three
lattice sites labeled by α=1, 2, 3 as shown in Fig. 1.

Equations of the unit cell current

Applying Kirchhoff ’s current rule to the lattice sites
r r r{ ; 1}, { ; 2}, { ; 3 } and using Ohm’s law leads to the following system
of current equations for the unit cell:
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Lattice Green’s functions and resistances

Substituting Eq. (1) into (11)–(13) with d= 2, one can easily find
out the Fourier transform of the Laplacian matrix of the generalized
decorated square lattice:
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The Fourier transform of the Green’s function G ( , )1 2 can be ob-
tained from Eq. (6), we have,
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The equivalent resistance between the lattice sites {(0, 0); } and
p p{( , ); }1 2 in the generalized decorated square lattice can be

determined from the general expression for the two-site resistance in
Eq. (10) for the two-dimensional case (d=2):
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Since the lattice Green’s function is 3 by 3 matrix we have nine types
of resistance, R p p( , )1 2 . These types of resistance are given in
Appendix A. It is interesting to note that from the symmetry

=R p p R p p( , ) ( , )33 1 2 22 2 1 and =R p p R p p( , ) ( , )13 1 2 12 2 1 .
For some small values of p pand1 2, the resistance can be evaluated

analytically as is shown below.

• The resistance between the lattice sites ={(0, 0) ; 2} and
={(0, 1) ; 2} is given by.
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• The resistance between the lattice sites ={(0, 0) ; 2} and
={(0, 2) ; 2} is given by.
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• The resistance between the lattice sites ={(0, 0) ; 2} and
={(0, 3) ; 2} is given by.
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where we have performed analytically the integration over 1 by the
method of residues [60,61].

=d
a b a bcos

2
2 2 (20)

and then over 2 by elementary ways.
In Table 1 we list the theoretical results for the resistance for small

separations between lattice sites. In Figs. 2 and 3, the resistances (in
units of R) are plotted as functions of p1.

We confirm these results by creating a virtual finite lattice of size 8
by 8 unit cells of identical resistors with National Instruments software
Multisim. The numerical results are listed in Table 1. It can be seen in
the table that the theoretical and numerical results of resistances are in
adequate agreement near the origin of the finite lattice. It is well-known
that the finiteness of the lattice causes the two-point resistances to be
greater than the values for an infinite lattice, which is expected because
the current has fewer paths.

Fig. 1. The generalized decorated square lattice of the resistor network.

Table 1
Theoretical and numerical values of two-site resistance R p p( , )1 2 in units of R. The theoretical values are for an infinite lattice, and the numerical values are for
finite lattice.

p p,1 2 R p p( , )11 1 2 R p p( , )22 1 2 R p p( , )12 1 2 R p p( , )23 1 2

Infinite lattice ×8 8 unit cells Infinite lattice ×8 8 unit cells Infinite lattice ×8 8 unit cells Infinite lattice ×8 8 unit cells

0, 0 0 0 0 0 0.393197 0.39451 0.356803 0.359447
1, 0 0.646978 0.652273 0.431975 0.437529 0.628088 0.640234 0.356803 0.359634
0, 1 0.646978 0.652273 0.451663 0.457156 0.569708 0.57649 0.535281 0.548882
1, 1 0.725732 0.737051 0.507877 0.520344 0.668151 0.68722 0.535281 0.550364
1, 2 0.821605 0.852105 0.609164 0.64334 0.738350 0.779288 0.636294 0.67905
2, 1 0.821605 0.852105 0.606593 0.641747 0.753742 0.800708 0.595643 0.627318
2, 0 0.797808 0.820128 0.582606 0.607982 0.738003 0.775282 0.535281 0.550308
0, 2 0.797808 0.820128 0.587913 0.610915 0.698965 0.723222 0.636294 0.675285
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Generalized decorated simple cubic lattice

In this section, we calculate the two-point resistance on the gen-
eralized decorated simple cubic lattice shown in Fig. 4. The unit cell
consists of four lattice points labeled by α=1, 2, 3, 4 with vectors

= =a aax ay,1 2 and =a az3 along the edges of the cube (see Fig. 4).

Equations of the unit cell current

Using Kirchhoff’s junction rule and Ohm’s law, the currents at the
lattice sites r{ ; 1}, r{ ; 2}, r r{ ; 3} and{ ; 4} in a one unit cell can be expressed
as the following:
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Lattice Green’s functions and resistances

In a similar way to the previous sub Section 3.2, it is easy to show
that the Fourier transform of the Laplacian matrix L ( , , )1 2 3 is given
by
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Using Eq. (6), the Green’s function G ( , , )1 2 3 can be calculated.
The matrix elements of the Green’s function for the generalized simple
cubic lattice are listed in Appendix B.

The resistance R p p p( , , )1 2 3 between the origin {0;α} and site
p p p{( , , ); }1 2 3 can be determined from Eq. (10) for the three – di-
mensional lattice (d=3):

= ×
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+ ++
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G G G e

G e
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There are sixteen types of the resistance for the generalized simple

Fig. 2. Plot of the resistances R p( , 0)1 , in units of R, between the sites
{(0, 0) ; } and p{( , 0) ; }1 in a generalized decorated square lattice of resistors
for = 1, 2, 3 and p0 501 .

Fig. 3. Plot of the resistances R p( , 0)1 , in units of R, between two sites
{(0, 0) ; } and p{( , 0) ; }1 in a generalized decorated square lattice of resistors
for and p0 501 .

Fig. 4. The generalized simple cubic lattice of the resistor network.
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cubic lattice and are listed in Appendix C. In Table 2, we report some
numerical values of the resistance between nearby lattice sites.

It may be interesting to compute the resistance when the distance
between the two lattice sites goes to infinity, i.e., p p p, ,1 2 3 . This
resistance can be evaluated by using the well-known Riemann-Lebesgue
lemma: If f ( ) is an integrable function on [ , ], then,

= =f p d f p d( )cos ( )sin 0 as p (31)

Therefore, the limit of the resistance R p p p( , , )1 2 3 in Eq. (10) as
p p p, ,1 2 3 , which is a finite value, can be written as,

+

=

+

R p p p G G
d d d G

G

( , , ) (0, 0, 0) (0, 0, 0)

2 2 2
[ ( , , )

( , , )]

1 2 3

1 2 3
1 2 3

1 2 3 (32)

The numerical values for the limit of the resistance R p p p( , , )1 2 3 as

p p p, ,1 2 3 are listed in Table 2 (last row).

Conclusion

In this work, we have used the general lattice Green’s function
technique developed in [7] for computing the effective resistance be-
tween two arbitrary lattice sites of infinite, generalized square and
simple cubic lattices of identical electrical resistors. We have numeri-
cally evaluated the asymptotic values of the resistance for the gen-
eralized simple cubic lattice when the separation between the lattice
sites tends infinity
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Appendix A. . The types of the resistance on the generalized decorated square lattice

In this appendix, we list the types of the resistance R p p( , )1 2 between the origin {0;α} and site p p{( , ); }1 2 in a generalized decorated square
lattice:
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The remaining types of the resistance can be obtained from the lattice symmetry.

Appendix B. . The matrix elements of the Green’s function for the generalized decorated simple cubic lattice

In this appendix, we list the matrix elements of the Fourier transform of the Green’s functionG ( , , )1 2 3 for a generalized decorated simple cubic
lattice:

=G [108 12 cos 12 cos 12 cos 7 cos cos
7 cos cos 7 cos cos 2 cos cos cos ]

L11
8

det 1 2 3 1 2

1 3 2 3 1 2 3 (B.1)

= = + + +
L

G G e4
det

[1 ][6 cos ][6 cos ]i
12 21 2 31

(B.2)

Table 2
Numerical values of two-site resistance in units of R.

p R11(p) R22(p) R33(p) R44(p) R12(p) R13(p) R14(p) R23(p) R24(p) R34(p)

0, 0, 0 0 0 0 0 0.25487 0.25487 0.25487 0.20608 0.20608 0.20608
1, 0, 0 0.39248 0.22966 0.24252 0.24252 0.33547 0.32342 0.32342 0.20608 0.20608 0.25111
0, 1, 0 0.39248 0.24252 0.24252 0.22966 0.32342 0.32342 0.33547 0.25111 0.26007 0.26007
0, 0, 1 0.39248 0.24252 0.22966 0.24252 0.32342 0.33547 0.32342 0.26007 0.35179 0.20608
1, 1, 0 0.41434 0.25440 0.25954 0.25440 0.34462 0.33955 0.34462 0.25111 0.25111 0.26757
1, 0, 1 0.41434 0.25440 0.25440 0.25954 0.34462 0.34462 0.33955 0.26007 0.25111 0.25111
0, 1, 1 0.41434 0.25954 0.25440 0.25440 0.33955 0.34462 0.34462 0.26757 0.26757 0.26007
1, 1, 1 0.42285 0.26522 0.26522 0.26522 0.34989 0.34989 0.34989 0.26757 0.26757 0.26757
1, 2, 0 0.43071 0.27399 0.27364 0.27207 0.35509 0.35314 0.35667 0.27189 0.27616 0.27811
∞ 0.45986 0.30145 0.30145 0.30145 0.38065 0.38065 0.38065 0.30145 0.30145 0.30145
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= = + + +
L

G G e4
det

[1 ][6 cos ][6 cos ]i
13 31 1 23

(B.3)

= = + + +
L

G G e4
det

[1 ][6 cos ][6 cos ]i
14 41 1 32

(B.4)

=
L

G 4
det

[132 13 cos 13 cos 8 cos cos ]22 2 3 2 3 (B.5)

= = + + +
L

G G e e14
det

[1 ][1 ][6 cos ]i i
23 32 21 3

(B.6)

= = + + +
L

G G e e14
det

[1 ][1 ][6 cos ]i i
24 42 31 2

(B.7)

=
L

G 4
det

[132 13 cos 13 cos 8 cos cos ]33 1 2 1 2 (B.8)

= = + + +
L

G G e e14
det

[1 ][1 ][6 cos ]i i
34 43 13 2

(B.9)

=
L

G 4
det

[132 13 cos 13 cos 8 cos cos ]44 1 3 1 3 (B.10)

where

=Ldet [108 24 cos 24 cos 24 cos 11 cos cos
11 cos cos 11 cos cos 3 cos cos cos ]

R
40

1 2 3 1 2

1 3 2 3 1 2 3 (B.11)

is the determinant of the Laplacian matrix L ( , , )1 2 3 .

Appendix C. . The types of the resistance on the generalized decorated simple cubic lattice

Here, we list the types of the resistance R p p p( , , )1 2 3 between the origin {0;α} and site p p p{( , , ); }1 2 3 in a generalized decorated simple cubic
lattice:

=R p p p d d d G p p p( , , ) 2
2 2 2

( , , )[1 cos cos cos ]1 2 3
1 2 3

1 2 3 1 1 2 2 3 3 (C.1)

where = 1, 2, 3, 4.

=

+ + + +

R p p p

p p p p

( , , ) [348 24 cos 37 cos 37 cos
14 cos cos 14 cos cos 22 cos cos 2 cos cos cos

2[6 cos ][6 cos ][cos cos( 1) ] cos cos ]

L
d d d

12 1 2 3 2 2 2
4

det 1 2 3

1 2 1 3 2 3 1 2 3

2 3 1 1 1 1 2 2 3 3

1 2 3

(C.2)
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The remaining types of the resistance can be obtained from the lattice symmetry.

Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rinp.2019.01.070.
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