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Abstract. Free motion of a fractional capacitor microphone is investigated in this paper. First, a capacitor
microphone is introduced and the Euler-Lagrange equations are established. Due to the fractional deriva-
tive’s the history independence, the fractional order displacement and electrical charge are used in the
equations. Fractional differential equations involve in the right- and left-hand–sided derivatives which is
reduced to a boundary value problem. Finally, numerical simulations are obtained and dynamical behaviors
are numerically discussed.

1 Introduction

In the classical mechanics, we have mainly two approaches to study the dynamical systems and get their equation of
motion: the Newtonian approach, which is a force-based one, and the energy approach, which has been invented by
the French mathematician Joseph Louis Lagrange. In many cases, we face with some difficulties in applying the force-
based approach, since we have to set up all forces acting the system, while sometimes they are not clear. The second
approach (i.e., Lagrangian) is a very elegant and useful method for finding the equation of motion for all dynamical
systems [1]. In the literature, one can find many interesting systems that can be solved using the Lagrangian method;
for instance, the spring pendulum, the coupled pendulum, Atwood’s machine, and many others. In recent years, many
efforts have been put extending the classical mathematics by using the concept of the fractional calculus. As is known,
the fractional calculus goes back to a very long time, say about 300 years ago. It found many applications in all
branches of science and engineering; see for example [2–12] and references therein. Riewe was the first physicist who
studied the non-conservative Lagrangian systems within the framework of the fractional calculus [13,14]. He defined
conjugate momenta and derived the Hamilton’s equations via the fractional and higher-order derivatives. A fractional
path integral technique on the path of the Lévy flights was introduced by Laskin [15,16]. He established the statistical
mechanics, fractional quantum, and a fractional generalization of the Schrödinger equation via the proposed fractional
path integral scheme. Using the Fox’s H function, he also derived a free particle quantum-mechanical kernel, a fractional
motion equation for the relevant density matrix, and a fractional generalization for the related Heisenberg uncertainty.
As a consequence, Laskin in [17] demonstrated the Hermiticity of the fractional Hamilton operator, investigated the
fractional quantum mechanics, and also instituted the parity conservation for it. Later on, many scientists followed
the works by Riewe and Laskin; hence, one can find in the literature many published materials on this topic such
as [18–21]. As can be seen from these works, the fractional Lagrangian (or the fractional Hamiltonian) is used to
investigate the physical systems, and this results the fractional Euler-Lagrange equations (FELEs). The next step is
to seek the numerical schemes for solving these equations effectively. These methods include the Grünwald-Letnikov
approximation [22], decomposition method [23,24], variational iteration method [25], and Adams-Bashforth-Moulton
technique [26].
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Recent investigations have shown that the representation of many physical systems via the fractional calculus
can provide new features of their complex dynamics with memory effects; however, due to the singularity of the
classical fractional derivatives, the nonlocal dynamics of the real-world phenomena may not be illustrated accurately.
Therefore, modelling and analyzing the nonlocal processes is a significant issue needs to be investigated. To overcome
this drawback, several types of the fractional operators with nonsingular kernel have been presented, which characterize
the nonlocal dynamics appropriately. One of the most important candidate among the existing ones is a new differential
operator with Mittag-Leffler (ML) kernel (ABC) [27]. The ML function is the queen of the fractional calculus, as
was noted by many researchers. We can point out here the studies done by Srivastava, Tomowski, Hilfer, Gorenflo,
Mainardi, and many other researchers [28–30]. The importance of the ML function in the integral transforms has also
been mentioned by Kilbas, Samko, and many others [31,32]. Despite of many high level researches about the integral
transforms on the basis of the ML function, just the above-mentioned new ABC was founded for the fractional
derivatives and applied to some practical cases [27]. Many new works has been reported verifying that this new kind
of calculus comes up with the satisfactory results when we encounter with the realistic systems [33–35]. Indeed, the
nonsingular kernel used in the ABC derivative can capture the nonlocality of the complex phenomena more accurately
than the classical fractional derivatives. Hence, compared to the standard fractional calculus, this new operator has
quite different properties, for example in the transient state, and can represent different features of the real-world
dynamics more precisely. Another important issue here is to design a suitable approximation scheme solving the
FELEs in the ABC sense. Note that, due to memory effects, the numerical schemes in fractional sense are not a direct
generalization of their classical counterparts. Hence, a substantial numerical analysis should be developed to solve the
new fractional models related to the real-world dynamics. Motivated by the above discussion, the main contribution
of this research is to investigate the free motion of a capacitor microphone by using its new formulation in fractional
sense. The main features of the new thinks provided in this manuscript are summarized as follows:

– Due to the history independence of the fractional derivative, the fractional-order displacement and electrical charge
are used in the equations.

– To characterize the nonlocal dynamics, the ABC fractional derivative is employed possessing the ML nonsingular
kernel. To the best of our knowledge, this is the first time to employ a nonlocal and nonsingular derivative operator
for the free motion of a capacitor microphone.

– A theoretical analysis is given to derive the related FELEs in the sense of ABC for the capacitor microphone.
– The new equations involve the right- and left-hand–sided derivatives, which makes them more complicated to solve

in practice. Hence, a new and powerful numerical technique is suggested to solve these equations effectively.
– According to the obtained results in this paper, the fractional calculus provides more flexible models than the

standard classical calculus, based on the fractional derivative order and the fractional operator itself. This feature
plays a remarkable role to extract new hidden aspects of physical system under consideration.

Consequently, the FELEs in the ABC sense and their solution method presented in this paper for the capacitor
microphone are new and comprise quite different information than their corresponding standard fractional equations.
Due to these features, we believe that the obtained results in this paper are valuable from both mathematical and
physical points of view.

The rest of this paper is organized as follows. In sect. 2, some preliminaries concerning the fractional derivatives are
presented. In sect. 3, the classical and fractional descriptions of the capacitor microphone are carried out. In sect. 4,
a numerical approach is established for solving the derived FELEs. In sect. 5, simulation results and their discussions
are given. Finally, we conclude the paper in the last section.

2 Preliminaries

In this section, some preliminary definitions are presented for the fractional operators. In the following, we define the
fractional derivatives in terms of the Riemann-Liouville [22], classic Caputo [22], and the ABC with ML kernel [27].

For a time-dependent function z: [a, b] → R
n and 0 < α < 1, the left and right α-th–order Riemann-Liouville

fractional derivatives are, respectively, described by [22]

RL
aD

α
t z(t) =

1
Γ (1 − α)

d
dt

∫ t

a

(t − ν)−αz(ν)dν, (1)

RL
tD

α
b z(t) = − 1

Γ (1 − α)
d
dt

∫ b

t

(ν − t)−αz(ν)dν, (2)
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Fig. 1. The capacitor microphone.

where Γ (·) is the Euler’s Gamma function. Also, the left and right α-th–order Caputo fractional derivatives are,
respectively, determined as [22]

C
aD

α
t z(t) =

1
Γ (1 − α)

∫ t

a

(t − ν)−αż(ν)dν, (3)

C
tD

α
b z(t) = − 1

Γ (1 − α)

∫ b

t

(ν − t)−αż(ν)dν. (4)

For z ∈ H
1(a, b) and 0 < α < 1, the left and right α-th–order ABC fractional derivatives are, respectively, defined

by [27]

ABC
aDα

t z(t) =
N(α)
1 − α

∫ t

a

Eα[−β(t − ν)α]ż(ν)dν, (5)

ABC
tD

α
b z(t) = −N(α)

1 − α

∫ b

t

Eα[−β(ν − t)α]ż(ν)dν, (6)

where β = α
1−α , N(α) is a normalization function with N(0) = N(1) = 1 and Eα(t) =

∑∞
k=0

tk

Γ (αk+1) is the ML
function.

Note that, here the normalization function in eqs. (5), (6) is considered as N(α) = 1 for the simplicity in the
simulations. For more details on the above-mentioned fractional operators, the readers are referred to [22,27].

3 Classical and fractional descriptions of the capacitor microphone

In this section, we investigate a capacitor microphone and present a fully description of its dynamical equation of
motion. As is shown in fig. 1, the capacitance C is changed according to the displacement x(t) of the bottom plate,
which is attached to a damper with constant B > 0 and a spring with constant K > 0 [36]. The air pressure caused by
the sound is modeled by a mechanical force f(t), which is applied to the bottom plate. Moreover, v(t) is an external
voltage source. The kinetic and potential energies of this system are, respectively, computed by

V =
1
2
Kx2 +

1
2εA

(x0 − x)q2, (7)

Ke =
1
2
mẋ2 +

1
2
Lq̇2, (8)

where q is the charge of capacitor, x0 − x is the distance between two plates, ε is the air dielectric constant, A is the
area of each plate, m is the mass of bottom plate, and L is the inductance. Furthermore, the power function P , which
is half of the amount of energy that is dissipated, is as follows:

P =
1
2
Bẋ2 +

1
2
Rq̇2, (9)

where R is the resistance. For the physical system under investigation, the classical Lagrangian, which specifies the
balance among no dissipative energy, is in the form below

Lc = Ke − V =
1
2
mẋ2 +

1
2
Lq̇2 − 1

2
Kx2 − 1

2εA
(x0 − x)q2. (10)
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Given that the capacitor microphone model has two degrees of freedom, which are the electrical charge q and mechanical
displacement x, we have two classical Euler-Lagrange equations (CELEs) d

dt (
∂Lc

∂q̇ )− ∂Lc

∂q + ∂P
∂q̇ = v and d

dt (
∂Lc

∂ẋ )− ∂Lc

∂x +
∂P
∂ẋ = f . Substituting P and Lc from eqs. (9)–(10) in the CELEs yields

Lq̈ + Rq̇ +
1

εA
(x0 − x)q = v, (11)

mẍ + Bẋ + Kx − q2

2εA
= f. (12)

As was noted in [37], many laws of the real-world phenomena cannot be captured by the theory of calculus of variations;
for instance, the dynamical equations obtained based on the traditional energy approach cannot describe the behavior
of nonconservative systems. On the other hand, the modeling of physical systems via the fractional calculus can provide
new features of their complex dynamics with memory effects. Hence, in the following, we introduce a fractional form
of the classical Lagrangian (10), which exposes new features of the physical system under study. Then, we derive
the FELEs for the system under investigation. The proof of these equations has also been given in the appendix. By
fractionalizing eq. (10), we define

Lf =
1
2
m(aDα

t x)2 +
1
2
L(aDα

t q)2 − 1
2
Kx2 − 1

2εA
(x0 − x)q2, (13)

where aDα
t can be one of those differential operators (3) or (5). Also, the power function P can be fractionalized as

follows:
P =

1
2
B(aDα

t x)2 +
1
2
R(aDα

t q)2. (14)

Then, we can obtain the FELEs from

− tD
α
b

∂Lf

∂aDα
t q

− aDα
t

∂Lf

∂tDα
b q

− ∂Lf

∂q
+

∂P

∂aDα
t q

= v, (15)

− tD
α
b

∂Lf

∂aDα
t x

− aDα
t

∂Lf

∂tDα
b x

− ∂Lf

∂x
+

∂P

∂aDα
t x

= f, (16)

where tD
α
b is the right fractional operator in eq. (4) or (6). Considering eqs. (13)–(16), the FELEs read

− LtD
α
b aDα

t q + RaDα
t q +

1
εA

(x0 − x)q = v, (17)

− mtD
α
b aDα

t x + BaDα
t x + Kx − 1

2εA
q2 = f. (18)

Notice that, as the fractional order α tends to 1, the FELEs (17)–(18) are reduced to the CELEs previously defined
in eqs. (11)–(12).

Now, we want to achieve the fractional Hamilton equations (FHEs). In order to this, we obtain the fractional
Hamiltonian function from

Hf = Lα,q aDα
t q + Lβ,q tD

α
b q + Lα,x aDα

t x + Lβ,x tD
α
b x − Lf , (19)

where the generalized momenta are introduced as

Lα,q =
∂Lf

∂aDα
t q

= LaDα
t q, Lβ,q =

∂Lf

∂tDα
b q

= 0, Lα,x =
∂Lf

∂aDα
t x

= maDα
t x, Lβ,x =

∂Lf

∂tDα
b x

= 0. (20)

Substituting eqs. (13) and (20) into eq. (19), the fractional Hamiltonian function is obtained

Hf = L(aDα
t q)2 + m(aDα

t x)2 − 1
2
m(aDα

t x)2 − 1
2
L(aDα

t q)2 +
1
2
Kx2 +

1
2εA

(x0 − x)q2. (21)

Then, the FHEs of motion are derived from

∂Hf

∂q
− tD

α
b Lα,q − aDα

t Lβ,q +
∂P

∂aDα
t q

= v, (22)

∂Hf

∂x
− tD

α
b Lα,x − aDα

t Lβ,x +
∂P

∂aDα
t x

= f, (23)

which result the corresponding FELEs (17)–(18). Again, as α → 1, the FHEs are reduced to the CELEs (11)–(12).
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4 Numerical method

In this section, an efficient numerical technique is suggested for solving the FELEs (17)–(18) considering the Caputo
and ABC differential operators. To this aim, we first begin with the ABC derivative and reformulate eqs. (17)–(18)
via defining the new state variables q1 = q, q2 = aDα

t q, x1 = x, and x2 = aDα
t x. Thus, we derive

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ABC
aDα

t q1 = q2,

ABC
tD

α
b q2 =

R

L
q2 +

1
LεA

(x0 − x1)q1 −
1
L

v,

ABC
aDα

t x1 = x2,

ABC
tD

α
b x2 =

B

m
x2 +

k

m
x1 −

1
2mεA

q1
2 − 1

m
f.

(24)

Using the fractional integral operator in the sense of ABC defined in [27] and supposing that q1(a) = q(a) and
x1(a) = x(a), as the initial values of charge and displacement, respectively, and q2(b) = x2(b) = 0, eq. (24) is
converted into the following system of fractional integral equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1(t) = q1(a) +
1 − α

N(α)
q2(t) +

α

Γ (α)N(α)

∫ t

a

q2(ν)(t − ν)α−1dν,

q2(t) =
1 − α

N(α)

(
R

L
q2(t) +

1
LεA

(x0 − x1(t))q1(t) −
1
L

v(t)
)

+
α

Γ (α)N(α)

∫ b

t

(
R

L
q2(ν) +

1
LεA

(x0 − x1(ν))q1(ν) − 1
L

v(ν)
)

(ν − t)α−1dν,

x1(t) = x1(a) +
1 − α

N(α)
x2(t) +

α

Γ (α)N(α)

∫ t

a

x2(ν)(t − ν)α−1dν,

x2(t) =
1 − α

N(α)

(
B

m
x2(t) +

k

m
x1(t) −

1
2mεA

q2
1(t) − 1

m
f(t)

)

+
α

Γ (α)N(α)

∫ b

t

(
B

m
x2(ν) +

k

m
x1(ν) − 1

2mεA
q2
1(ν) − 1

m
f(ν)

)
(ν − t)α−1dν.

(25)

Now, a uniform partition is considered on [a, b] with hN = b−a
N as the length of the time step, in which N is an

arbitrary positive integer. Furthermore, the numerical approximations of qi(tj) and xi(tj) are, respectively, denoted
by qi,j and xi,j , where i = 1, 2 and tj is the time at node j, i.e., tj = a + jhN for 0 ≤ j ≤ N . Then, by applying the
fractional Euler method in [38], the convolution integrals in eq. (25) are discretized and a system of linear algebraic
equations is obtained

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 −
1 − α

N(α)
Q2 −

α

N(α)
BN,αQ2 = Q1,0,

Q2 −
1 − α

N(α)
GQ2(Q1, Q2,X1, V ) − α

N(α)
FN,αGQ2(Q1, Q2,X1, V ) = 0,

X1 −
1 − α

N(α)
X2 −

α

N(α)
BN,αX2 = X1,0,

X2 −
1 − α

N(α)
GX2(Q1,X1,X2, F ) − α

N(α)
FN,αGX2(Q1,X1,X2, F ) = 0,

(26)

where

BN,α = (FN,α)T = hN

⎡
⎢⎢⎢⎢⎢⎣

ω0,α 0 . . . 0

ω1,α
. . . . . .

...
...

. . . . . . 0
ωN,α . . . ω1,α ω0,α

⎤
⎥⎥⎥⎥⎥⎦

, ω0,α = 1, ωj,α =
(

1 +
α − 1

j

)
ωj−1,α, j = 1, 2, . . . , (27)
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Fig. 2. The dynamics of the electrical charge q(t) and the displacement x(t) for the capacitor microphone within the Caputo
and ABC fractional operators with α = 0.9 and the integer-order classical solution.

Qi =

⎡
⎢⎢⎣

qi,0

...
qi,N

⎤
⎥⎥⎦ , Xi =

⎡
⎢⎢⎣

xi,0

...
xi,N

⎤
⎥⎥⎦ , Qi,0 =

⎡
⎢⎢⎣

qi,0

...
qi,0

⎤
⎥⎥⎦ , Xi,0 =

⎡
⎢⎢⎣

xi,0

...
xi,0

⎤
⎥⎥⎦ , i = 1, 2, (28)

V =

⎡
⎢⎢⎣

v(t0)
...

v(tN )

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

f(t0)
...

f(tN )

⎤
⎥⎥⎦ , (29)

GQ2(Q1, Q2,X1, V ) =

⎡
⎢⎢⎢⎢⎢⎣

R

L
q2,0 +

1
LεA

(x0 − x1,0)q1,0 −
1
L

v(t0)

...
R

L
q2,N +

1
LεA

(x0 − x1,N )q1,N − 1
L

v(tN )

⎤
⎥⎥⎥⎥⎥⎦

, (30)

GX2(Q1,X1,X2, F ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

B

m
x2,0 +

k

m
x1,0 −

1
2mεA

q2
1,0 −

1
m

f(t0)

...
B

m
x2,N +

k

m
x1,N − 1

2mεA
q2
1,N − 1

m
f(tN )

⎤
⎥⎥⎥⎥⎥⎥⎦

. (31)

It is noticeable that, the aforesaid results can also be applied to the classic Caputo case by replacing the ABC integral in
eq. (25) with its Caputo counterpart defined in [22], and then, repeating the above-mentioned discretization algorithm.

5 Simulation results

In this section, the dynamical behaviors of q(t) and x(t) are investigated considering the Caputo and ABC fractional
operators with different values α. The system parameters are taken as L = 106 H, R = 2 × 106 Ω, A = 2 × 10−2 m2,
ε = 8.854 × 10−12 F

m , v = 12 volts, m = 0.01 kg, B = 10 Ns
m , K = 10 N

m , f = 0.001 sin(5t) and x0 = 0.005m.
Furthermore, the initial values are assumed to be q(0) = 0 and x(0) = 0. As it is depicted in figs. 2–7, the numerical
solution of the FELEs not only represents various behaviours for different values of α but also tends to the integer-
order classical solution as α tends to 1. Moreover, the ABC derivative provides quite different properties than the
classical Caputo, for example, in the transient state. Therefore, more flexible models are provided considering the
new fractional operators, which is advantageous in better understanding the complex behaviours of the real-world
dynamical phenomena.
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Fig. 3. The dynamics of the electrical charge q(t) and the displacement x(t) for the capacitor microphone within the Caputo
and ABC fractional operators with α = 0.925 and the integer-order classical solution.
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Fig. 4. The dynamics of the electrical charge q(t) and the displacement x(t) for the capacitor microphone within the Caputo
and ABC fractional operators with α = 0.95 and the integer-order classical solution.
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Fig. 5. The dynamics of the electrical charge q(t) and the displacement x(t) for the capacitor microphone within the Caputo
and ABC fractional operators with α = 0.975 and the integer-order classical solution.
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Fig. 6. The dynamics of the electrical charge q(t) and the displacement x(t) for the capacitor microphone within the Caputo
and ABC fractional operators with α = 0.995 and the integer-order classical solution.
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Fig. 7. The dynamics of the electrical charge q(t) and the displacement x(t) for the capacitor microphone within the Caputo
and ABC fractional operators with α = 1 and the integer-order classical solution.

6 Conclusion

In this work, we used the concept of the fractional calculus in order to study the motion equation of a capacitor
microphone. We established the classical and fractional Lagrangian as well as the fractional Hamiltonian of the motion
and derived the FELEs and FHEs in the ABC and Caputo sense. Then, we solved the derived fractional equations via
a numerical approach, which applied the quadrature rule of Euler convolution in order to discretize the convolution
integral. Simulation results showed that the behaviours of the FELEs depend on the fractional derivative order as
well as the differential operators. Indeed, various behaviours were exhibited by using different values of α and various
derivative operators, which converged to the classical solution as α goes to 1. Consequently, the fractional calculus has
new notable features, which help us to have more realistic and flexible models of the real-world dynamics.
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Grant No: TBAG-117F473.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.



Eur. Phys. J. Plus (2019) 134: 181 Page 9 of 10

Appendix A. (The proof of the FELEs in the ABC sense)

Base on the fractional calculus of variations presented in [37], we define the fractional Lagrangian function as Lf =
L(t, z, aDα

t z, tD
α
b z), where z = [ q

x ], aDα
t z, tD

α
b z denote, respectively, the left and right ABC derivatives, and L has

continuous first and second (partial) derivatives with respect to all its arguments. As a starting point to achieve the
FELEs, the action function of the classical field is considered such that it contains the fractional partial derivatives,
i.e., S[z] =

∫ b

a
L(t, z, aDα

t z, tD
α
b z)dt. From the Agrawal’s fractional Lagrangian mechanics [37], finding the extremum

point of S and employing the formula for the fractional integration by parts yield the FELEs. In the following, inspired
by the Agrawal’s formulation, we suppose that z(t) has continuous left and right fractional derivatives of order α for
a ≤ t ≤ b and satisfies the boundary conditions z(a) = za and z(b) = zb. For finding the extremum point z∗(t) of the
functional S[z], we take ε ∈ R and consider the following family of curve:

z(t) = z∗(t) + εζ(t), (A.1)

where ζ(a) = ζ(b) = 0. Since the fractional derivatives are linear operators, then it follows

aDα
t z(t) = aDα

t z∗(t) + ε aDα
t ζ(t), (A.2)

tD
α
b z(t) = tD

α
b z∗(t) + ε tD

α
b ζ(t). (A.3)

Substituting eqs. (A.1)–(A.3) into the action function S[z], for each ζ we find

S = S(ε) =
∫ b

a

L(t, z∗ + εζ, aDα
t z∗ + ε aDα

t ζ, tD
α
b z∗ + ε tD

α
b ζ)dt. (A.4)

A necessary condition for S(ε) to have an extremum z = z∗(t) is that for all admissible ζ(t), we should have

dS

dε
=

∫ b

a

[
∂L

∂z
ζ +

∂L

∂aDα
t z

aDα
t ζ +

∂L

∂tDα
b z

tD
α
b ζ

]
dt = 0. (A.5)

As has been shown in [39], the formulation of the fractional integration by parts can be hold considering the ABC
fractional derivative. Applying the formulation, we have the following equations for the second and third integrals in
eq. (A.5) by considering the boundary conditions ζ(a) = ζ(b) = 0

∫ b

a

∂L

∂aDα
t z

aDα
t ζ dt =

∫ b

a
tD

α
b

(
∂L

∂aDα
t z

)
ζ dt, (A.6)

∫ b

a

∂L

∂tDα
b z

tD
α
b ζ dt =

∫ b

a
aDα

t

(
∂L

∂tDα
b z

)
ζ dt. (A.7)

Substituting eqs. (A.6)–(A.7) into eq. (A.5) yields

dS

dε
=

∫ b

a

[
∂L

∂z
+ tD

α
b

∂L

∂aDα
t z

+ aDα
t

∂L

∂tDα
b z

]
ζ dt = 0. (A.8)

Since ζ(t) is arbitrary, a well-established concept in the calculus of variations results the FELEs

∂L

∂z
+ tD

α
b

∂L

∂aDα
t z

+ aDα
t

∂L

∂tDα
b z

= 0. (A.9)
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