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Abstract: This contribution serves a dual purpose. The first purpose was to investigate the 
possibility of using a sensor array (an electronic tongue) for on-line identification and 
quantification of key odorants representing a variety of chemical groups at two different 
acidities, pH 6 and 8. The second purpose was to simplify the electronic tongue by 
decreasing the number of electrodes from 14, which was the number of electrodes in the 
prototype. Different electrodes were used for identification and quantification of different 
key odorants. A total of eight electrodes were sufficient for identification and quantification 
in micromolar concentrations of the key odorants n-butyrate, ammonium and phenolate in 
test mixtures also containing iso-valerate, skatole and p-cresolate. The limited number of 
electrodes decreased the standard deviation and the relative standard deviation of triplicate 
measurements in comparison with the array comprising 14 electrodes. The electronic tongue 
was calibrated using 4 different test mixtures, each comprising 50 different combinations of 
key odorants in triplicates, a total of 600 measurements. Back propagation artificial neural 
network, partial least square and principal component analysis were used in the data 
analysis. The results indicate that the electronic tongue has a promising potential as an on-
line sensor for odorants absorbed in the bioscrubber used in livestock buildings. 

Keywords: electronic tongue, odorants, principal component analysis (PCA), partial least 
squares (PLS), back propagation artificial neural network (BPNN) 
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1. Introduction  

An odour is defined as a sensation resulting from reception of a stimulus by the olfactory sensory 
system [1], and it is an important environmental pollution issue [2]. Odorants are the compounds 
responsible for imparting an odour, and their molecular mass is between 30 to 300 Daltons [3,4]. 
These odours lead to environmental and health problems. It was found that neighbours of livestock 
buildings suffer from depression, negative emotions, greater mood disturbance, more tension, an 
overall feeling of less vigour, anger, fatigue and confusion compared with people living far away from 
livestock buildings [5]. 

There are many methods to reduce odours emission from livestock building, i.e. physical, chemical 
and biological. Biological methods are considered environmentally friendly [6]. One of the biological 
methods is the bioscrubber which is used for air treatment in different industrial and agricultural 
applications [7,8]. The bioscrubber comprises two main parts: an absorption column and a bioreactor. 
The absorption column is placed inside the ventilation channel in the livestock building, where odour 
substances (odorants), ammonia and dust particles are absorbed by water droplets. Water droplets are 
introduced to the absorption column through nozzles, which receive water recycled from the 
bioreactor. The bioreactor can be placed at floor level and can supply water for several absorption 
columns [6]. 

Odours are measured sensorally or analytically. Sensory methods measure odours, while analytical 
methods measure odorants. Examples of analytical methods include purge and trap (P&T), solid phase 
micro extraction (SPME), direct aqueous injection–gas chromatography (DAI-GC) and solvent 
extraction [9-12]. Analytical methods have the advantages of objectivity, repeatability and accuracy 
[13].  

Characterization of a mixture of odorants, in absorption column or in bioreactor, gives information 
about the absorbed odorants and the efficiency of the bioreactor. An electronic tongue (ET) has a high 
potential for this application. A calibrated ET inserted before or/and after the bioreactor characterizes 
the odorants on-line. ET is an analytical instrument containing an array of electrodes, with partial 
specificity for different components in liquids and an appropriate pattern recognition or multivariate 
calibration tool for identification and quantification of even complex liquid mixtures. It measures the 
compounds in a liquid with high sensitivity [14,15]. It was already used in many applications including 
characterization of different types of mineral water and wine [16], monitoring of fermentation process 
[17,18] and food quality [19,20]. 

There is a need to test ETs in different applications, e.g. health services, environmental technology 
and quality control. Therefore, research should become less focused on the  relation between the ET 
signals and human sensory panels [14,21,22]. However, ET is a recently developed method, and it has 
not yet reached its full potential for application outside the laboratory [14,23]. Nevertheless, ET’s 
ability should neither be underestimated [14] nor overestimated [22], and more research should address 
new applications. 

There are many advantages in using ET compared to other methods, such as GC, high performance 
liquid chromatography (HPLC) or mass spectrometry. The key advantages are: rapidity, simplicity, 
low cost and simultaneous on-line determination of several components of very different chemical 
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properties in the liquid. Furthermore, ET provides information about ions and compounds that are 
found in aqueous phase only (e.g. compounds having a low vapour pressure) [18,22,23]. 

There are huge numbers of odorants in the livestock building. Approximately 300 different odorants 
have been identified [1], many of them have a very low detection threshold of 0.001 mg/m3 or less 
[24]. A representative selection of these odorants was used in this study.  

The pH plays an important factor in the bioscrubber application. The transfer of odorants from the 
gas (i.e. in the air) to the liquids phase in the absorption column and the microbial activity in the 
bioreactor are strongly dependent on pH. The optimum pH in the bioreactor is in the interval of 4 to 8 
[25]. However, most microbial growth occurs near neutral pH [26]. In this study, an ET based on 
potentiometric cross-sensitive electrodes was used to study the characterization of four test mixtures of 
selected odorants, i.e. two different mixtures of key odorants, at two different acidities (pH 6 and pH 
8). 

This study serves a dual purpose. The first purpose is to investigate the possibility of using ET to 
identify and/or quantify key odorants, and the second purpose is to simplify the ET by decreasing the 
number of electrodes from 14, which was the number in the prototype to a lower but sufficient number. 
The present study is an example of application of the ET for monitoring environmental and industrial 
processes. 

2. Experimental 

2.1. Sensor array, i.e. the electronic tongue (ET) 

A custom made prototype ET was purchased from Analytical Systems, Ltd., St. Petersburg – 
Russia. It was designed to have a cross-sensitivity for the selected key odorants tested in this study. It 
consists of 14 potentiometric electrodes. Eleven polymer (PVC) plasticized membrane electrodes 
containing different active substances (no. 1-11), two chalcogenide glass electrodes (no. 12-13) and 
one wire electrode (no. 14). The electrodes were numbered in order to identify the individual 
electrodes that were sufficient for identification and quantification of different key odorants. 

A pH glass electrode was also included in the sensor array in addition to a conventional Ag/AgCl 
reference electrode. Potentiometric measurements were performed using a high-input impedance 
multichannel voltmeter connected to a PC for data acquisition. The electrode response comprises ionic, 
redox or molecular interaction at the membrane/liquid interface. Pattern recognition and multivariate 
calibration methods were used to deconvolute these complex signals, producing quantitative and 
qualitative information about multicomponent liquids [16,27]. 

 
2.2. Preparation of test mixtures of key odorants 

It is an impossible task to include all odorants from livestock buildings in the calibration. Therefore 
six key odorants were selected in this study as representive odorants. They represented a variety of 
chemical groups, i.e. volatile fatty acids (VFAs), indoles, phenols and ammonia. The selected key 
odorants were: n-butyric acid, iso-valeric acid, 3-methyl indole (skatole), phenol, 4-methly phenol (p-
cresol) and ammonia. The chemical and physical properties of the selected key odorants are shown in 
Table 1. The pKa for neutral skatole is unavailable in literature. The pKa for indole, pKa = 16.7, was 
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used to give a rough estimate of the dissociation of skatole [28]. Despite the very low dissociation of 
skatole in water, skatole was added to the test mixtures of key odorants. This was done to mimic 
mixtures of odorants in livestock buildings, where skatole is one of the most important components of 
odour nuisance problems [29]. 

Many researchers investigated the concentrations of these key odorants in air samples from 
livestock buildings. O’Neil and Philips [24] and Schiffman et al. [1] reviewed concentration intervals 
which are used as the main reference for the minimum and maximum concentrations of these key 
odorants (Table 2). The lowest minimum and the highest maximum concentrations reported in these 
two reviews were used in the test mixtures of key odorants in this work. 

In the bioscrubber, odorants are present in the liquid phase. Henry’s constant (H) is the ratio of the 
partial pressure of the analyte in the gas phase to the equilibrium concentration in the water (expressed 
in: atmosphere × liter / mol) and is used for calculating the concentrations of odorants in the liquid 
phase. The dimensionless air-water partition coefficient (KAW) is equal to H/RT, and it is the air to 
water concentration ratio at equilibrium [30]. The value of the dimensionless air-water partition 
coefficient expresses the volatility of the odorant. An odorant with KAW of 0.05 or larger is volatile, 
whereas those with a lower KAW occur predominantly in the water phase [31]. All of the key odorants 
have KAW lower than 0.05 and they will occur predominantly in the liquid phase. The concentrations of 
the key odorants in air, the equivalent equilibrium concentrations in the liquid phase and the interval of 
concentrations used in our experiments are shown in Table 2. The interval of concentrations of each 
key odorant was subdivided into seven intervals (Table 3), to get as many combinations as possible in 
the test mixtures of key odorants used in calibration experiments. 

Stock solutions with different concentrations were prepared separately for each key odorant. Phenol 
and skatole were obtained as solids, with purities of 99.5% and 98%, respectively. The purity of n-
butyric acid, iso-valeric acid and p-cresol was 99%. These key odorants were purchased from Sigma-
Aldrich (Schnelldorf, Germany). Ammonium hydroxide (25%, v/v) was purchased from J. T. Baker 
(Deventer, Holland). All key odorants were diluted in deionised water, except skatole which was 
dissolved in hot deionised water [32]. All key odorants were used without any further purification. 
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Table 1. Chemical and physical properties of key odorants. 
  No. Odorant Chemical  Molecular 

abstract 
service 

(CAS #) 

formula 
Molecular 

mass 
(g mol-1) 

Solubility in 
H2O at 25oC 

(g l-1) 

pKa Henry's constant 

(H) 
atm. l. mol-1 

Vapour  
pressure at 25oC 

(mm Hg) 

Octanol-water 
partition 

coefficient  
 (log p) 

Melting point 
oC 

Boiling point 
oC 

1.  n-butyric acid 107-92-6 C4H8O2       88.11 60 4.82 5.35 × 10-4 1.65 0.79 -5.7 163.7
2.  iso-valeric acid 503-74-2 C5H10O2       

       
       

       

        

102.13 40.7 4.77 8.33 × 10-4 0.44 1.16 -29.3 176.5
3.  phenol  108-95-2 C6H6O 94.11 82.8 9.99 3.33 × 10-4 0.35 1.46 40.9 181.8
4.  4-methyl phenol (p-cresol)  106-44-5 C7H8O 108.14 21.5 10.3 1 × 10-3 0.11 1.94 35.5 201.9
5.  3-methyl indole (skatole) 83-34-1 C9H9N 131.18 0.498 ≈ 16.7 a 2.13 × 10-3 0.00555 2.60 97.5 266
6.  ammonia 7664-41-7 NH3 17.03 482 9.25 1.61 × 10-2 7510 0.23 -77.7 -33.4

Reference of properties: Syracuse Research Corporation [33] 
a pKa for indole [28] 

 

 Table 2: Concentration of key odorants in air and water. 
  Odorant Dimensionless

air-water partition 
coefficient  

Minimum key odorant 
concentration in air c 

 

Maximum key odorant 
concentration in air c 

 

Minimum equivalent 
equilibrium key odorant 

 concentration in water  d, e 

Maximum equivalent 
equilibrium key odorant 

 concentration in water d, e 

Interval of concentrations used 
in experiments 

 

 (      KAW)b mg/m3 mg/m3 mg/m3 M mg/m3 M Minimum (M) Maximum (M) 

n-butyric acid 2.19 × 10-5 0.001    0.7 46 5.2 × 10-7 32 × 103 3.6 × 10-4 10-7 10-3 
iso-valeric acid 3.40 × 10-5 0.002    

    
    

  
    

0.21 59 5.8 × 10-7 62 × 102 6.0 × 10-5 10-7 10-4 
phenol  1.36 × 10-5 0.001 0.0078 73 7.8 × 10-7 57 × 101 6.1 × 10-6 10-7 10-5 
p-cresol 4.09 × 10-5 0.002 0.041 49 4.5 × 10-7 10 × 102 9.3 × 10-6 10-7 10-5 
skatole 8.70 × 10-5 0.00049 0.003 5.6 4.3 × 10-8 34 2.6 × 10-7 10-8 10-6 
ammonia 6.54 × 10-4 0.01 18 15 8.9 × 10-7 27 × 103 1.6 × 10-3 10-7 10-3 

b KAW  = H / RT, where: R: gas constant = 0.0821 atm. l. / (mol. K), T: degree Kelvin  
KAW

  = H (atm. l. / mol) / 24.47 
c According to O’Neil and Philip [24] and Schiffman et al. [1]  
d Equivalent equilibrium concentrations in water calculated using KAW [30]: 

KAW = Concentration in air (Ca) / Concentration in water (Cw) ⇒ Cw = (24.47 × Ca) / H (atm. l. /mol) 
e M (mole/l.) = 10-6  × concentration (mg/m3) / molecular mass (g/mole)  
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Table 3. Mixture of odorants and concentration intervals of key odorants. 
Odorant Minimum Concentration numbers g Maximum

 
Mixture 

containing  
ammonium 

Mixture 
 containing  
p-cresolate 

1 2 3 4 5 6 7 

   M M M M M M M 

n-butyrate  X f X 10-7 10-6 10-5 5 × 10-5 10-4 5 × 10-4 10-3 
iso-valerate X X 10-7 5 × 10-7 10-6 5 × 10-6 10-5 5 × 10-5 10-4 
phenolate X X 10-7 3 × 10-7 5 × 10-7 10-6 3 × 10-6 5 × 10-6 10-5 
p-cresolate  X 10-7 3 × 10-7 5 × 10-7 10-6 3 × 10-6 5 × 10-6 10-5 
skatole X X 10-8 3 × 10-8 5 × 10-8 10-7 3 × 10-7 5 × 10-7 10-6 
ammonium X  10-7 5 × 10-6 h / 10-6  10-5 5 × 10-5 10-4 5 × 10-4 10-3 
f X: presence of key odorant in mixture 
g Concentration numbers were used to randomize concentration intervals of key odorants. Method was explained in 

experimental design section  
h Concentration of 5 × 10-6 M was included in concentration interval of ammonium in test mixtures of key odorants in 

deionised water, i.e. pH 6  

 

2.3. Experimental design 

Four groups of experiments were carried out separately: two mixtures of key odorants at two 
different acidities. In the first group of experiments, the mixture of key odorants contained: n-butyrate 
(n-butanoate), iso-valerate, phenolate, skatole and ammonium. In the second group of experiments, 
ammonium was replaced with p-cresolate. Deionised water was solvent at pH 6. The pH of the 
mixtures was adjusted by addition of sodium hydroxide or hydrochloric acid. At pH 8, a buffer of 
KH2PO4 (3.7 × 10-3 M) and Na2HPO4 (78 × 10-3 M) was used. After pH adjustment, the acidity 
remained constant throughout the experiment. Each group of experiments comprised 50 measurements 
in triplicates, totally 150 measurements. This number of measurements was chosen according to 
preliminary experiments, which showed that 50 measurements constitute a sufficient number of 
combinations of mixtures of key odorants. In each group of experiments, the mixtures of key odorants 
were measured in random order. Microsoft office Excel 2000 (Microsoft Corporation, USA) software 
was used to randomize the intervals of concentrations in the test mixtures in each group of 
experiments, using a randomization and uniform distribution function. Williams [34] suggested that 
samples for calibration should be collected with uniform distribution of composition within the 
anticipated interval. In uniform distribution, each treatment has an equal probability of being observed. 
The method for randomization of 50 measurements using Excel program was: use the tools option, 
data analysis, random number generation, distribution: uniform, number of variables was 5 (since we 
had five key odorants in each mixture), parameter was between 1-7 (since we had seven intervals of 
concentrations) and number of measurements was 50 (since we had 50 experiments). The randomized 
group of experiments comprised 50 rows (experiments), with 5 columns (five key odorants) and in 
each row there were five numbers between 1 to 7, which is related to the concentration of each key 
odorant. For example, if the digits for one row (experiment) were: 1, 7, 5, 3, 4 and if we follow the 
order in Table 3 for the test mixture containing ammonium, we will mix concentration no. 1 of n-
butyrate (10-7 M), concentration no. 7 of iso-valerate (10-4 M), concentration no. 5 of phenolate (3×10-6 
M), concentration no. 3 of skatole (5 × 10-8 M), and concentration no. 4 of ammonium (5 × 10-5 M). 
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The ET was submerged in the test mixture of key odorants in a 100 ml Teflon container with a 
magnetic stirrer. Five minutes were sufficient for electrodes to reach stable potential in all cases. 
Electrodes were washed several times with deionised water between measurements to reach initial 
potential readings. 

 
2.4. Multivariate data analysis 

Multivariate data analysis, including pattern recognition and calibration methods, is reviewed in 
many papers [27,35-39].  

Pattern recognition includes a variety of methods, e.g. principal components analysis (PCA), linear 
discrimination analysis (LDA) and self organizing map (SOM). Calibration methods include partial 
least squares (PLS), principal component regression (PCR), multiple linear regression (MLR) and back 
propagation artificial neural network (BPNN) [27,36]. In this study, we mainly used PCA, PLS and 
BPNN. 

PCA is a well known method for processing of multidimensional data. It is an unsupervised data 
reduction method and it describes variations of multivariate data in terms of a set of uncorrelated 
variables. The original data matrix is projected from a high dimensional space into a less dimensional 
space, with as little loss of information as possible. The matrix is decomposed into scores (which 
describes the relationship among samples) and loadings (which describes the relationship among 
variables). The principal components (PCs) are determined on basis of the maximum variance 
criterion, and they are orthogonal. The first PC contains most of the variance of the data. In addition, 
PCA results are comparatively easy to comprehend and interpret [16,27]. 

PLS projects the original data to latent structures. It correlates two matrices, e.g. X (the response of 
the electrodes) and Y (the concentration of the key odorant), by a linear multivariate model. It has the 
ability to analyse noisy, collinear and incomplete variables in both matrices [27,40]. There are two 
types of PLS regression. PLS-1, where only one Y-variable is used, and PLS-2 where more than one 
Y-variable is used. It was suggested that PLS-1 gave better results than PLS-2 [41]. 

The root mean square error of prediction (RMSEP) is an estimate of the prediction error, which 
should be as small as possible. Also, the correlation, the lowest numbers of PCs and the lowest 
difference between the RMSEP and the root mean square error of calibration (RMSEC) were 
considered in modelling [42]. Outliers were identified and handled. 

The Unscrambler (v. 9.2, Camo, Oslo, Norway) software was used for PCA and PLS analysis. Full 
cross validation was used for the averaged triplicates of each sample. 

 
2.5. Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are networks of simple processing elements, i.e. neurons, 
operating within their local data range and communicating with other elements. The architectures of 
ANN are inspired by the structure of the brain, but have developed away from their biological 
inspiration [37,39]. ANNs have many applications, for instance in spectroscopy, process control, 
protein folding, analytical chemistry and electrochemical systems [38,39]. 
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The BPNN (also called feed forward network), which is one type of ANNs, is the most widely used 
network and was used in this study as well. It comprises many processing elements that are arranged in 
layers: an input layer, an output layer, and one or more layers in between, called hidden layers. In 
BPNN, the inputs are introduced and weighted, then received by each node in the next layer. The 
weighted inputs are summed and passed through a non-linear transfer function to produce the node 
output, which is also weighted and passed to the processing elements in the next layer. The output 
from the network is compared with the actual value and the error between the two values is calculated. 
This error is then used to adjust the weights until the network finds a set of weights that will produce 
the input-output mapping with the smallest possible error [35,37]. Principal components are used as 
inputs for the neural network model in order to reduce the risk of overfitting [41]. 

We used a neural network software ‘Predict’ (v. 3.13, NeuralWare, Pittsburgh, USA) employing 
BPNN for modelling in the framework of Microsoft Excel. The ‘Predict’ program is powerful and easy 
to use [43]. The models in the program contain one hidden layer with different numbers of nodes. 
Despange and Massart [35] concluded that models with one hidden node are stable. The models 
employ hyperbolic tangent and sigmoid transfer functions in the hidden and output layers, 
respectively. These functions are commonly used, differentiable, fit a large number of non-linearities 
and have the appropriate slope behaviour for data extremes [35,43]. Direct connections between input 
and output nodes were also allowed, which enables the models to evaluate the need for a hidden layer. 
The model employs an adaptive gradient learning rule. Also, it reduces overfitting by including a 
weight decay method. The default parameters suggested by the program were used. Maier and Dandy 
[44] suggested that inclusion of default parameters is acceptable. The default parameters and 
mathematical explanation of the functions are beyond the scope of this communication but  they are 
described elsewhere [45]. 

In all BPNN models, the rule of thumb that the number of samples in the training set is at least 
twice the total number of weights in the BPNN topography [35] was followed in our analysis. Each 
measurement in triplicates was treated as one sample. This triplicate was used either in train, in test or 
in validation set. 

Data were centred and scaled (i.e. by multiplying each element in the matrix by the term 1/standard 
deviation) before modelling in both PLS and BPNN, so each variable will have the same importance in 
the analysis [40]. Calibration models were carried out separately for each key odorant. 

During data analysis, different electrodes were examined for their contribution in identification and 
quantification of key odorants. The aim was to achieve the best recognition and calibration results, 
taking into consideration the rules of thumbs in multivariate data analysis. The total number of 
electrodes in the electronic tongue was reduced without any loss of analytical information. This was 
done before by others in many applications of ET, e.g. Legin et  al. [16] and Auger et al. [20]. 
Moreover, a dimensionless parameter called: ratio of standard error of performance to standard 
deviation (RPD) can be used to assess the calibration model in both PLS and BPNN. RPD is the 
standard deviation of the validation set of the dependent variable divided by RMSEP. As a rule of 
thumb, an acceptable model has RPD larger than 2.5, and an excellent model has 10 or larger [34,46]. 
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3. Results and discussion 

In this study, we calibrated an ET using four test mixtures of selected key odorants in 
concentrations within the interval of minimum and maximum concentrations of key odorants given in 
two reviews [1,24]. However, it is emphasized that there is a huge variation in the concentrations of 
odorants in livestock buildings caused by environmental factors, composition of feed, construction of 
livestock building including ventilation, sources of sample and measuring methods [29]. 

The four test mixtures comprised two mixtures of key odorants at two different acidities (pH 6 and 
pH 8). One mixture of key odorants contained: n-butyrate (n-butanoate), iso-valerate, phenolate, 
skatole and ammonium. In the other mixture of key odorants ammonium was replaced with p-cresolate 
(Table 3). The choice of ammonium and p-cresolate was due to their importance in the odour problems 
in livestock buildings [29,47]. The four groups of experiments (two mixtures of key odorants at two 
acidities) were carried out separately, and they can be considered independently with regard to 
experimental design and number of samples in each interval. The possibility to identity and/or quantify 
key odorants in different mixtures is discussed below. 

 
3.1. Test mixtures of key odorants containing ammonium at pH 6 

Standard deviation of triplicate measurements was between 0 - 11 mV and 0 - 5.6 mV when 
electrodes no. 1-14 and no. 2, 5, 6, 7, 8, 9 were used, respectively. The relative standard deviation 
(RSD = (standard deviation / mean) × 100), was between 0 - 4.8% and 0 - 3.4% when electrodes no. 1-
14 and no. 2, 5, 6, 7, 8, 9 were used, respectively. It was noticed that the most interfering ions were 
ammonium and n-butyrate.  

PCA score plot of all samples (Fig. 1) indicates that it is possible to monitor ammonium in the 
mixture of key odorants. The two PCs accounted for 96% of the variation. Six electrodes were 
sufficient (no. 2, 5, 6, 7, 8, 9). Samples containing high ammonium concentrations, i.e. 10-4 - 10-3 M, 
are surrounded by the dashed line.  

Due to the complexity of the test mixture, it was difficult to model any key odorant reasonably in 
their entire interval of concentrations. Data were sorted in ascending and descending orders, according 
to concentrations of key odorants, in an attempt to find a trend in the data. We could identify 
ammonium, when the concentration of n-butyrate was below 10-4 M. The number of samples which 
has concentration of n-butyrate below 10-4 M was 34 samples. The PCA score plot of these samples is 
shown in Fig. 2. Two PCs accounted for 97% of the variation. Six electrodes were sufficient (no. 2, 5, 
6, 7, 8, 9). The figure shows that the concentration of ammonium decreases diagonally, which 
indicates that ET is able to monitor ammonium in the mixture of key odorants. 
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Figure 1. PCA score plot of all samples in test mixtures of key odorants containing ammonium at pH 
6. Samples surrounded by dashed line (16 samples) contain high ammonium concentration (10-4 to 10-3 
M). Full cross validation was used and six electrodes were sufficient. 
 
 

Samples having ammonium concentrations equal to and higher than 5 × 10-6 M (23 samples 
including one outlier) could be modelled reasonably. PLS-1, full cross validation and two principal 
components were used and six electrodes (no. 2, 5, 6, 7, 8, 9) were sufficient. The principal 
components accounted for 92% and 93% of total validated variance of X and Y, respectively. Slope, 
correlation (r), RMSEP and RPD of the calibration curve were 0.93, 0.95, 0.26 and 3.35, respectively 
(Fig. 3). The model is an acceptable model, since the RPD is greater than 2.5, and it has a good slope 
and correlation. For modelling ammonium using BPNN, 23 samples in triplicates (69 samples) were 
split into train, test and validation sets, i.e. 33, 18 and 18, respectively. The BPNN used 6, 3, 1 nodes. 
Six electrodes were sufficient (no. 2, 5, 6, 7, 8, 9). Slope, correlation, RMSEP and RPD of the 
calibration curve were 0.92, 0.98, 0.18 and 4.40, respectively (Fig. 4). It is noticed that slope, 
correlation, RMSEP and RPD showed an improvement in the BPNN model compared to the PLS-1 
model. 
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Figure 2. PCA score plot of 34 samples in test mixtures of key odorants containing ammonium at pH 
6. Concentration of n-butyrate was below 10-4 M. Full cross validation was used and six electrodes 
were sufficient. 
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Figure 3. Calibration curve of ammonium from 5 × 10-6 to 10-3 M at pH 6. PLS-1, full cross validation 
for 22 samples and two PCs were used and six electrodes were sufficient. Concentration of n-butyrate 
was below 10-4 M. 
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Figure 4. Calibration curve (18 samples) of ammonium from 5 × 10-6 to 10-3 M at pH 6. BPNN used 6, 
3, 1 nodes. Concentration of n-butyrate was below 10-4 M. 

 
It was possible to model n-butyrate, if the concentration of ammonium was below 5 × 10-4 M, and 

the concentration of n-butyrate was equal to or higher than 10-5 M. The 29 samples in triplicates (87 
samples) were split into train, test and validation sets, e.g. 48, 21 and 18, respectively. The BPNN used 
6, 8, 1. Six electrodes were sufficient (no. 2, 5, 6, 7, 8, 9). Slope, correlation, RMSEP and RPD of the 
calibration curve were 0.97, 0.94, 0.28 and 2.56, respectively (Fig. 5).  
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Figure 5. Calibration curve (18 samples) of n-butyrate at pH 6. BPNN used 6, 8, 1 nodes. 
Concentration of ammonium was below 5 × 10-4 M. 
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In quantification of both ammonium and n-butyrate, we found modelling limitations. It was noticed 
that ammonium could be modelled if the concentration of n-butyrate was below 10-4 M (between 10-7 
to 5 × 10-5 M). Also n-butyrate could be modelled if the concentration of ammonium was below 5 ×10-4 

M (between 10-7 to 10-4 M). Considering these limitations, the sample number was decreased from 50 
to 27. When modelling ammonium from 5 × 10-6 to 10-4 M, the number of samples decreased to 16. 
PLS-1, full cross validation and two principal components were used and six electrodes (no. 2, 5, 6, 7, 
8, 9) were sufficient. The two PCs accounted for 94% and 89% of the total calibrated variance of X 
and Y, respectively. The PLS-1 score plot (Fig. 6 a) shows that ET can monitor ammonium. Samples 
with high ammonium are located to the right side of the figure. Slope, correlation, RMSEP and RPD of 
the calibration curve were 0.86, 0.92, 0.20 and 2.5, respectively (Fig. 6 b). These results indicate that 
the ET can monitor ammonium in the presence of the other key odorants, if the concentration of n-
butyrate is below 10-4 M. 

 
3.2. Test mixtures of key odorants containing p-cresolate at pH 6 

Standard deviation of triplicate measurements was between 0 - 17.3 mV and 0 - 6.8 mV when 
electrodes no. 1-14 and no. 1, 2, 4, 5, 8 were used, respectively. The RSD was between 0 - 15.5% and 
0 - 3.5% when electrodes no. 1-14 and no. 1, 2, 4, 5, 8 were used, respectively. 

In this test mixture, all samples of key odorants containing high concentrations of n-butyrate (5 ×10-

4 - 10-3 M) were identified. PLS-1 and full cross validation were used and five electrodes (no. 1, 2, 4, 5, 
8) were sufficient. The PLS-1 scores plot (Fig. 7) identifies these samples (10 samples) at the upper 
right side of the figure. This indicates that the ET can monitor high n-butyrate concentrations (5 × 10-4 - 
10-3 M) in the test mixture. 
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Figure 6. a: PLS-1 score plot for 16 samples of ammonium, considering limits of modelling in test 
mixtures of key odorants containing ammonium at pH 6. b: Calibration curve of identical ammonium 
samples. PLS-1, full cross validation and two PCs were used and six electrodes were sufficient. 
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Figure 7. PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 
6. Samples (10 samples) with high concentrations (5 × 10-4 - 10-3 M) of n-butyrate are surrounded by 
dashed line. Full cross validation was used and five electrodes were sufficient. 

 
BPNN was used for modelling n-butyrate from 10-5 to 10-3 M. Thirty-nine samples in triplicates 

(117 samples) were split into train, test and validation sets, i.e. 60, 30 and 27, respectively. The BPNN 
used 5, 2, 1. Five electrodes were sufficient (no. 1, 2, 4, 5, 8). Slope, correlation, RMSEP and RPD of 
the calibration curve were 1.02, 0.93, 0.28 and 2.61, respectively (Fig. 8). 
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Figure 8. Calibration curve (27 samples) of n-butyrate in test mixtures of key odorants containing p-
cresolate at pH 6. BPNN used 5, 2, 1 nodes. 
 

3.3. Test mixtures of key odorants containing ammonium at pH 8 

Standard deviation of triplicate measurements was between 0 - 2.6 mV and 0 - 1.6 mV when 
electrodes no. 1-14 and no. 1, 2, 4, 5, 7, 8 were used, respectively. The RSD was between 0 - 8.4% and 
0 - 0.7% when electrodes no. 1-14 and no. 1, 2, 4, 5, 7, 8 were used, respectively. The standard 
deviation of triplicate measurements and RSD were between 0 - 1.6 mV and 0 - 0.7% when electrodes 
no. 1, 5, 7, 8 were used.  

The PLS-1 score plot of n-butyrate (Fig. 9), shows that ET can monitor all samples (15 samples) 
containing a high n-butyrate concentration (5 × 10-4 - 10-3 M) in the mixture. PLS-1 and full cross 
validation were used and six electrodes (no. 1, 2, 4, 5, 7, 8) were sufficient. It was noticed that the 
number of samples with these concentrations, i.e. 15 samples, was different from the number of 
samples in the same mixture in deionised water, i.e. 10 samples (Fig. 7). This is because the design of 
each experiment was carried out independently. However, in both experiments we used uniform 
distribution. 

BPNN was used for modelling n-butyrate. Thirty-six samples were prepared with n-butyrate 
concentrations from 10-5 to 10-3 M. These triplicate samples (108 samples) were split into 60, 27 and 
21 as train, test and validation sets, respectively. The BPNN used 6, 0, 1. Six electrodes were sufficient 
(no. 1, 2, 4, 5, 7, 8). Slope, correlation, RMSEP and RPD of the calibration curve were 0.88, 0.94, 0.22 
and 2.67, respectively (Fig. 10). This indicates that ET can monitor and model n-butyrate at pH 8, in 
the presence of the other key odorants in the test mixture of odorants. 

It was impossible to model the ammonium concentration. This is most likely explained by the 
decrease of the ammonium-ammonia ratio in combination with the increased ionisation of the other 
added key odorants in the test mixture when pH was increased from 6 to 8. 



Sensors 2007, 7                   
           

 

119

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

 

 

PC1 (25%, 39%)

P
C

2 
(4

1%
, 8

%
)

 
Figure 9. PLS-1 score plot of all samples in test mixtures of key odorants containing ammonium at pH 
8. Samples (15 samples) with high concentrations (5 × 10-4 - 10-3 M) of n-butyrate are surrounded by 
dashed line. Full cross validation was used and six electrodes were sufficient. 
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Figure 10. Calibration curve (21 samples) of n-butyrate in test mixtures of key odorants containing 
ammonium at pH 8. BPNN used 6, 0, 1 nodes. 

 
Phenolate was modelled from 10-6 to 10-5 M, when the concentration of both n-butyrate and 

ammonium was below 5 × 10-4 M. Seventeen samples in triplicates (51samples) were split into 24, 15 
and 12 for train, test and validation sets, respectively. The BPNN used 4, 4, 1. Four electrodes were 
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sufficient (no. 1, 5, 7, 8). Slope, correlation, RMSEP and RPD of the calibration curve were 0.89, 0.91, 
0.15 and 2.62, respectively (Fig. 11). This indicates that ET has a potential for prediction of phenolate 
concentration, when the concentrations of ammonium and n-butyrate are low. This result needs further 
investigations, since the calibration curve covers a rather a small interval of concentrations compared 
to other key odorants. Nevertheless, it indicates that ET has a potential as a sensor for phenolate as 
well. 
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Figure 11. Calibration curve (12 samples) of phenolate in test mixtures of key odorants containing 
ammonium at pH 8. BPNN used 4, 4, 1 nodes.  
 
3.4. Test mixtures of key odorants containing p-cresolate at pH 8 

Standard deviation of triplicate measurements was between 0 - 2.1 mV and 0 - 1.6 mV when 
electrodes no. 1-14 and no. 2, 5, 6, 7, 8, 9 were used, respectively. The RSD of glass electrodes was 
high when electrodes no. 1-14  were used, since the potential readings and standard deviations of 
triplicate measurements were very small, e.g. 0, -0.2 mV. When omitting the glass electrodes from the 
array, the RSD was between 0 - 0.9%. The RSD was between 0 - 0.4% when electrodes no. 2, 5, 6, 7, 
8, 9 were used. It is noticed that the standard deviation of triplicate measurements in the mixture of 
key odorants in phosphate buffer at pH 8 was lower than the standard deviation of triplicate 
measurements in the same mixture of key odorants in the deionised water with pH 6. This is because 
the buffered mixture contains higher and stabilized concentrations of ions. 

Figure 12 shows that samples with high n-butyrate concentration (5 × 10-4 - 10-3 M) in the mixture, 
can be monitored using PLS-1 score plot. PLS-1 and full cross validation were used and six electrodes 
(no. 2, 5, 6, 7, 8, 9) were sufficient. It was possible to model n-butyrate from 5 × 10-5 to 10-3 M. 
Twenty-nine samples in triplicates (87samples) were split into 48, 21 and 18 as train, test and 
validation sets, respectively. The BPNN used 6, 9, 1 nodes. Six electrodes were sufficient (no. 2, 5, 6, 
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7, 8, 9). Slope, correlation, RMSEP and RPD of the calibration curve were 0.83, 0.97, 0.14 and 3.22, 
respectively (Fig. 13). 
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Figure 12. PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at 
pH 8. Samples (15 samples) with high concentrations (5 × 10-4 - 10-3 M) of n-butyrate are surrounded 
by dashed line. Full cross validation was used and six electrodes were sufficient. 
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Figure 13. Calibration curve (18 samples) of n-butyrate in test mixtures of key odorants containing p-
cresolate at pH 8. BPNN used 6, 9, 1 nodes. 
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3.5. Potential of ET for on-line measurement of odorants 

A summary of results of all experiments is shown in Table 4. The modelling using BPNN was 
preferred in most of the analytical procedures. This was due to the non-linear relation between the 
response of electrodes (independent variables, or predictors) and the concentration of the key odorants 
(dependent variables) [48]. The non-linear response of the electrodes results from interferences 
between ions in the test mixtures [18]. PCA and PLS can explain linear models only. They are able to 
show the linear projection of samples, and to model the concentration of key odorants in a linear way. 
If PLS is used for modelling of non-linear relations a high number of principal components is required, 
which may lead to overfitting. Therefore, the BPNNs were preferred for modelling, and they could 
model concentrations in the range below what was possible using PCA or PLS score plots. PCA and 
PLS score plots show the linear relation between samples in two dimensions. BPNN used all 
dimensions of the inputs, i.e. electrode signals, for non-linear modelling of concentration. 

In all modelling, it was noticed that inclusion of measurements of the wire and the two glass 
electrodes decreased the quality of models. Therefore we excluded these electrodes from all our 
models i.e. PCA, PLS and BPNN.  

The ET used in this study was a custom made prototype, which was used for the first time. This 
study served a dual purpose. The first goal was to test the ET in identification and quantification of key 
odorants, and the second goal was to simplify the array by decreasing the number of electrodes. Both 
goals have been achieved. It was possible to reduce the number of electrodes sufficient for modelling 
without any loss of analytical information (Table 4), since the calibration curves of different key 
odorants had a high correlation coefficient, reasonable slope, small RMSEP and an acceptable RPD. 
The reduction of number of electrodes was achieved using multivariate data analysis. For example, six 
electrodes only were sufficient for all identification and quantification models in the test mixtures of 
key odorants containing ammonium at pH 6. Six and four electrodes were sufficient to model n-
butyrate and phenolate, respectively in the test mixture of key odorants containing ammonium at pH 8. 
By inclusion of individual electrodes sufficient for analysis of all four test mixtures of key odorants, it 
is seen that eight electrodes (no. 1, 2, 4, 5, 6, 7, 8, 9) were sufficient for identification and 
quantification of n-butyrate, ammonium and phenolate. The decreased, but sufficient number of 
electrodes improved the repeatability, since the standard deviation and the RSD decreased, as shown in 
Table 5. 

ET measured mainly ions in the mixtures [49]. The percentage of ionised n-butyric acid, iso-valeric 
acid, phenol, p-cresol, skatole and ammonium at pH 6 is: 94%, 94%, 0.01%, 0.005%, 0 % and 100%, 
respectively. For comparison, the percentage of ionised n-butyric acid, iso-valeric acid, phenol, p-
cresol, skatole and ammonium at pH 8 is: 100%, 100%, 1%, 0.5%, 0% and 95%, respectively. 

The ET could identify and quantify different key odorants, i.e. ammonium, n-butyrate and 
phenolate, in different mixtures at different acidities. These results are promising for the application in 
bioscrubbers, since most existing bioscrubber designs focus on the removal of one single type of 
compound only [50], or removal of one single compound only [51]. 

 



Sensors 2007, 7                              

 

123 

 
Table 4. Summary of results for different test mixtures of key odorants at pH 6 and pH 8. 
pH Test mixture of  

key odorants 
Sufficient electrodes 

 out of 14  
Key odorant i Identified (I) and quantified (Q) key odorant 

6 Containing ammonium  2, 5, 6, 7, 8, 9 ammonium I. between 10-4 - 10-3 M (Fig. 1) 
  2, 5, 6, 7, 8, 9 ammonium I. between 10-7 - 10-3 M, when concentration of n-butyrate was < 10-4 M (Fig. 2)  
  2, 5, 6, 7, 8, 9  ammonium Q. between 5 × 10-6 - 10-3 M, when concentration of n-butyrate was < 10-4 M (Fig. 3 and Fig. 4) 
  2, 5, 6, 7, 8, 9  n-butyrate Q. between 10-5 - 10-3 M, when concentration of ammonium was < 5 × 10-4 M (Fig. 5) 
  2, 5, 6, 7, 8, 9 ammonium I. between 5 × 10-6 - 10-4 M, when concentration of n-butyrate was < 10-4 M, and concentration of 

ammonium was < 5 × 10-4 M (Fig. 6 a) 
  2, 5, 6, 7, 8, 9  ammonium Q. between 5 × 10-6 - 10-4 M, when concentration of n-butyrate was < 10-4 M, and concentration of 

ammonium was < 5 × 10-4 M (Fig. 6 b) 
     

  

  

6 Containing p-cresolate 1, 2, 4, 5, 8  n-butyrate I. between 5 × 10-4 - 10-3 M (Fig. 7) 
  1, 2, 4, 5, 8 

 
n-butyrate 
 

Q. between 10-5 - 10-3 M (Fig. 8) 
 

8 Containing ammonium 1, 2, 4, 5, 7, 8 n-butyrate I. between 5 × 10-4 - 10-3 M (Fig. 9) 
  1, 2, 4, 5, 7, 8 n-butyrate Q. between 10-5 - 10-3 M (Fig. 10) 
  1, 5, 7, 8  

 
phenolate 
 

Q. between 10-6 - 10-5 M, when concentration of n-butyrate and ammonium were < 5 × 10-4 M (Fig. 11) 
 

8 Containing p-cresolate 2, 5, 6, 7, 8, 9 n-butyrate I. between 5 × 10-4 - 10-3 M (Fig. 12) 
  2, 5, 6, 7, 8, 9 n-butyrate Q. between 5 × 10-5 - 10-3 M (Fig. 13) 

i Key odorant identified (I) and/or quantified (Q) 

 



Sensors 2007, 7                   
           

 

124

Table 5. Standard deviation (StDev) and relative standard deviation (RSD) of triplicate measurements 
with total and sufficient numbers of electrodes. 

pH Test mixture of key odorants Electrode no. StDev  j 
(mV)  

RSD  j 
 (%) 

6 Containing ammonium 1-14 0 - 11 0 - 4.8 
  2, 5, 6, 7, 8, 9 0 - 5.6  0 - 3.4 
6 Containing p-cresolate 1-14 0 - 17.3 0 - 15.5 
  1, 2, 4, 5, 8 0 - 6.8 0 - 3.5 
8 Containing ammonium 1-14 0 - 2.6  0 - 8.4 
  1, 2, 4, 5, 7, 8 0 - 1.6 0 - 0.7 
  1, 5, 7, 8 0 - 1.6 0 - 0.7 
8 Containing p-cresolate 1-14 0 - 2.1 high l 
  1-11, 14 0 - 2.1 0 - 0.9 
  2, 5, 6, 7, 8, 9 0 - 1.6 0 - 0.4 

j StDev: Standard deviation of triplicate measurements 
k RSD: Relative standard deviation of triplicate measurements 
l high: potential readings and standard deviation were very small, which results in high value of RSD 

 

The ability to monitor ammonium indicates that ET has a potential as an alarm system for 
ammonium in livestock buildings, for which there is a demand [47,52]. 

ET could reasonably identify and quantify n-butyrate, in most cases. This indicates that n-butyrate 
can be used as a representative odorant of the mixture of odorants. Moreover, n-butyric acid is 
considered as an important odorant [29]. 

By comparing the results of quantification using ET and gas chromatography (GC) [9], it is seen that 
ET could model phenolate from10-6 to 10-5 M. The GC method showed a rectilinear correlation with 
concentration of phenol from 1.6 × 10-6 to 8.0 × 10-5 M. ET could model n-butyrate from 10-5 to 10-3 M. 
Also, the GC had a rectilinear correlation with concentration of n-butyric acid from 1.1 × 10-6 to 5.7 × 
10-5 M. These results indicate that ET is comparable to GC in terms of sensitivity. However, ET is the 
method of preference since it has the potential as an on-line sensor. 

Above it is reported that model limitations for both ammonium and n-butyrate were observed. 
However, it is unlikely that these limitations will have any significance, when the ET is used as an on-
line sensor in the bioscrubber. In the case of ammonium, the model limitation occurred in 
quantification of ammonium when the concentration of n-butyrate was above 5 × 10-4 M. Literature 
values for minimum and maximum equivalent equilibrium concentrations in water for n-butyrate are 
5.2 × 10-7 M and 3.6 × 10-4 M, respectively, so the model limitation concentration range for 
quantification is marginal compared to the total concentration range. 

As far as model limitations for n-butyrate at high ammonium concentration are concerned, the same 
considerations are valid. 

Even in extreme cases the model still identifies both ammonium and n-butyrate with an accuracy 
sufficient for application of ET in an alarm function. Due to the all limitations, n-butyrate and 
ammonium can be simultaneously quantified in narrow range: 5 × 10-6 – 5 × 10-4 and 10-5 – 10-4 M, 
respectively. 

The simultaneous on-line measurement of ammonium, n-butyrate and phenolate makes ET an 
obvious candidate for objective characterization of odour emission from livestock buildings. Of equal 
importance is the application of ET in control of the bioscrubber. By measurement of key odorants in 
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the liquid after the bioreactor it is possible to optimize the function of the bioscrubber, i.e. keeping 
dissolved odorants below suitable threshold values. By doing this, a sufficient driving force for 
transport of odorants from the gas to the liquid is maintained. This control is a prerequisite for 
optimization of the water flow through the nozzles in the absorption column, which is the most energy 
consuming part of the bioscrubber. 

4. Conclusion 

This study served a dual purpose. The first purpose was to identify and/or quantify key odorants 
occurring in livestock buildings using ET. The second purpose was to simplify the construction of the 
ET and the data analysis by decreasing number of electrodes in ET as much as possible. The ET was 
calibrated using 4 different test mixtures, each comprising 50 different combinations of key odorants in 
triplicates, a total of 600 measurements. The ET was able to quantify ammonium and n-butyrate using 
six electrodes only in the test mixtures of key odorants at pH 6. In the test mixtures containing 
ammonium at pH 8, n-butyrate and phenolate were quantified using six and four electrodes, 
respectively. Initially 14 electrodes were investigated in different PCA, PLS and BPNN models, which 
showed that eight electrodes were sufficient for all identifications and quantifications of n-butyrate, 
ammonium and phenolate. The decreased, but sufficient number of electrodes improved the 
performance of the ET because the standard deviation and relative standard deviation of measurements 
in triplicates decreased in comparison with the array comprising 14 electrodes. Limitations were taken 
into consideration during identification and quantification of key odorants. These limitations are related 
to the interference of different ions at different conditions, i.e. odorants present in mixtures at different 
acidities. Further research with more cross-sensitive electrodes is needed. However, the results indicate 
that ET has a promising potential as an on-line sensor for measurement of odorants in livestock 
buildings as a prerequisite for control of odorant emission from livestock buildings. 
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