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ABSTRACT: In this paper, we study the motion of a heavy bead sliding on a
rotating wire. Our first step was constructing the classical Lagrangian of the
system. Secondly, we derived the Euler- Lagrange equation (ELE). Thirdly, we
solve the obtained ELE, which is a non-homogenous second order linear differ-
ential equation. Finally, by using MATLAB the equation is solved numerically
for some selected parameters, and for specified initial conditions.
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1 INTRODUCTION

Lagrangian and Hamiltonian mechanics play an important role in solving a wide
range of classical physical systems [1–3]. This branch of classical mechanics is
based on scalars concepts (i.e. kinetic and potential energies). Classical mechan-
ics books contain many such systems, and for more details one can refer to the three
references [1–3] above. Solving such systems by this technique results in obtaining
differential equations called equations of motions (i.e. Euler-Lagrange equations).
These equations have to be solved for some given initial conditions either analyti-
cally or numerically in some cases.

In under graduate level mathematician and physician students study an interesting
course called ordinary differential equations (ODE). In this course students study
techniques that enable them to solve many branches of ODE, see for example [4–7].

Numerical solution of ODE’s are powerful because they help scientists in solving
many kinds of DE’s without the need of knowing their analytical solutions due to
difficulty, or insufficient data. In literature one can find many numerical methods and
techniques that has been considered [8–12].

In this paper, we choose an interesting physical system (a heavy bead sliding in
a rotating wire). The importance of this example is due to the fact that the kinetic
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energy of it depends on both the dynamical variable and its derivative, instead on the
time derivative only as it is familiar [3]. In addition, problems similar to the system
considered in this work arise when we study dynamics of mechanical systems with
rotating parts performing various operations such as mixing, grinding, drying, etc.
of diverse substances [13–15]. In our system we considered the simplest situation
where friction is neglected.

The rest of this work is organized as follows: In Section 2 an explanation how
to obtain the Euler-Lagrange equation of the system is illustrated. Analytical and
numerical solution for the system is given in Section 3. Results and discussion are
presented in Sec. 4. Finally, we close the paper with a conclusion.

2 PHYSICAL DESCRIPTION OF THE SYSTEM AND ITS EULER–LAGRANGE

EQUATIONS

Consider a heavy bead of mass (m) sliding without friction on a thin wire that is
rotating about a vertical axis by an external agent (i.e. motor) at a constant angular
frequency (ω) as illustrated in Fig. 1 below.

 

 

which is q (i.e., the distance from origin). Thus (for more details about the 

derivation one can refer to [3]): 
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Fig. 1. Heavy bead sliding on a rotating wire. 

 

Now, by using the known equation 0
L d L

y dt y

 
 

 
, the classical Euler-

Lagrange equation read: 

 

(2)                                               
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The last equation can now be solved for specific parameters if some initial 

conditions are given.  

 

 

3    ANALYTICAL AND NUMERICAL SOLUTION OF THE SYSTEM 

 

In this section we aim to solve Eq. (2) analytically and numerically for some 

specified initial conditions. First of all let us introduce the following two variables 

 and , where: 

 

(3)                                                    Sin   .  

 

Fig. 1. Heavy bead sliding on a rotating wire.

The wire is tilted away from the vertical y-axis by a fixed angle ψ. The bead is
constrained to move on the wire. The importance of this example comes from the
fact that the kinetic energy in this case depends on both the dynamical variable and
on its derivative, instead of on the time derivative alone.

To write the classical Lagrangian (L) of the system we need to write both the
kinetic energy and the potential energy of the bead respectively, then, as it is known
L = T − V . To describe the motion of the bug we need just one dynamical variable
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which is q (i.e., the distance from origin). Thus (for more details about the derivation
one can refer to [3])

(1) L = T − V =
1

2
m(ẏ2 + y2ω2 sin2 ψ)−mgy cosψ .

Now, by using the known equation

∂L

∂y
− d

dt

∂L

∂ẏ
= 0 ,

the classical Euler–Lagrange equation read

(2) ÿ = yω2 sin2 ψ − g cosψ .

The last equation can now be solved for specific parameters if some initial condi-
tions are given.

3 ANALYTICAL AND NUMERICAL SOLUTION OF THE SYSTEM

In this section we aim to solve Eq. (2) analytically and numerically for some specified
initial conditions. First of all let us introduce the following two variables α and β,
where:

α = ω sinψ ,(3)

β = g cosψ .(4)

Using Eqs. (3) and (4), Eq. (2) becomes

(5) ÿ − α2y = −β .

Following the procedures known in the ordinary differential equations texts for
undergraduate levels (see, for example, [5,6]) one can easily solve Eq. (5) above eas-
ily. From Literature it is clear that the solution of Eq. (5) consists from two parts of
homogenous solution (yh), and the particular solution (yp). The first one can be ob-
tained by setting the right hand side of Eq. (5) to zero, then the following homogenous
solution is obtained (for more details the reader can refer to [2–5]):

(6) yh(t) = Aeαt +Be−αt .

Concerning the particular solution and since the right hand side of Eq. (5) is
constant, we can assume the particular solution as

(7) yp(t) = C .
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After substituting Eq. (7) in Eq. (5), one gets

(8) yp =
g cosψ

ω2 sin2 ψ
.

As a result, the general solution to Eq. (5) is the sum of Eq. (7) and Eq. (8).
Therefore, the general solution can be written as

(9) y(t) = Ae(ω sinψ)t +Be−(ω sinψ)t +
g cosψ

ω2 sin2 ψ
.

Making use of the following initial condition: y(0) = 5m ẏ(0) = 0, one can write
Eq. (9) as

(10) y(t) =
(
5− g cosψ

ω2 sin2 ψ

)
cosh ((ω sinψ)t) +

g cosψ

ω2 sin2 ψ
.

Below we make use of MATLAB in solving Eq. (10) numerically for some se-
lected parameters and the initial condition given above as presented in Figs. 2 – 4.

 

 

Below we make use of MATLAB in solving Eq. (10) numerically for some 

selected parameters and the initial condition given above as presented in Figs. 2- 4. 

 

 
 

Fig. 2. The variation of the distance against time,  = 1,  = (/2, /6, /4, /12), t 

= 0.1i, i = 0, 1, …, 10, where y, y1, y2 are respect to . 

 

 
 

Fig. 3. The variation of the distance against time,  = (0.5, 1, 3),  = /6, t = 0.1i, i 

= 0, 1, …, 10, where y, y1, y2 are respect to . 

 

Fig. 2. (Color online) The variation of the distance against time, ω = 1, ψ =
π/2, π/6, π/4, π/12, t = 0.1i, i = 0, 1, . . . , 10, where y, y1, y2 are respect to ψ.

Now, if we consider another new initial condition y(0) = 5, ẏ(0) = 1, the general
solution of Eq. (9) will be

(11) y(t) =
[
5−

( 1

ω sinψ
+

g cosψ

ω2 sin2 ψ

)]
cosh ((ω sinψ)t) .

Again, we make use of MATLAB in solving Eq. (11) numerically for some se-
lected parameters and the initial condition given above as presented in Figs. 5 – 9.
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selected parameters and the initial condition given above as presented in Figs. 2- 4. 

 

 
 

Fig. 2. The variation of the distance against time,  = 1,  = (/2, /6, /4, /12), t 

= 0.1i, i = 0, 1, …, 10, where y, y1, y2 are respect to . 

 

 
 

Fig. 3. The variation of the distance against time,  = (0.5, 1, 3),  = /6, t = 0.1i, i 

= 0, 1, …, 10, where y, y1, y2 are respect to . 

 

Fig. 3. (Color online) The variation of the distance against time, ω = (0.5, 1, 3), ψ = π/6,
t = 0.1i, i = 0, 1, . . . , 10, where y, y1, y2 are respect to ω.

 

 

 
 

Fig. 4. The variation of the distance against time, and the angle  for fixed angular 

speed  = 1. Here  = (/12)i, t = 0.1i, i = 0, 1, …, 10. 

 

Now, if we consider another new initial condition (0) 5, (0) 1y y   and the 

general solution of Eq. (9) will be: 
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2 2

1 cos
( ) (5 ( ))cosh(( sin ) )
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Again, we make use of MATLAB in solving Eq. (11) numerically for some 

selected parameters and the initial condition given above as presented in Figs. 5-9. 

 

Fig. 4. (Color online) The variation of the distance against time, and the angle ψ for fixed
angular speed ω = 1. Here ψ = (π/12)i, t = 0.1i, i = 0, 1, . . . , 10.

4 RESULTS AND DISCUSSION

Figures 2 – 9 show the position y(t) of the particle against the time. In Figs. 2 –
4 we use the initial conditions y(0) = 5, ẏ(0) = 0 to obtain the constant A and B
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Fig. 5. The variation of the distance against time for  = 0.5 and the following 

angles  = (/2, /6, /4), where y, y1, y2 belong to  respectively. 

 

 
 

Fig. 6. The variation of the distance against time for  = 1 and the following angles 

 = (/2, /6, /4), where y, y1, y2 belong to  respectively. 

Fig. 5. (Color online) The variation of the distance against time for ω = 0.5 and the following
angles ψ = (π/2, π/6, π/4), where y, y1, y2 belong to ψ, respectively.

given in Eq. (9) and then we plot y(t) against time. Figure 2 shows the variation
of position y(t) against time when angular speed is fixed and chosen to be ω = 1,
while the angle ψ is changing (here we consider ψ = π/2, π/6, π/4, π/12). On the
other hand in Fig. 3 the variation of the position y(t) against time is plotted when the
angular speed is fixed and chosen to be ω = 3, while the angle ψ is changing (here
we consider ψ = π/2, π/6, π/4, π/12). Figure 4 shows the behavior of y(t) against
both time and the angle ψ for constant angular speed ω = 1.

In Figs. 5 – 7 we show the variation of the distance against time for different
angles ψ = π/2, π/6, π/4, where in Fig. 5 angular speed is taken ω = 0.5, in Fig. 6
ω = 1, and finally in Fig. 7 ω = 3. In the last two figures (Figs. 8 and 9) the variation
of the distance against tine for different angular speeds ω = 0.5, 1, 3, in Fig. 8 the
angle is chosen to be ψ = π/4, while in Fig. 9 ψ = π/12.

In Fig. 2 one can see that for ψ = π/2 the distance is increasing (the particle
is moving away from the origin (i.e. moving to the right) as it is expected because
the wire is rotating in a horizontal plane, and it is not inclined. But for the angles
ψ = π/6, π/4, π/12 the distance is decreasing. This is due to the fact that the bead
is sliding towards the origin and it is sliding faster for ψ = π/12 rather than ψ = π/6,
π/4.
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Fig. 5. The variation of the distance against time for  = 0.5 and the following 

angles  = (/2, /6, /4), where y, y1, y2 belong to  respectively. 

 

 
 

Fig. 6. The variation of the distance against time for  = 1 and the following angles 

 = (/2, /6, /4), where y, y1, y2 belong to  respectively. 

Fig. 6. (Color online) The variation of the distance against time for ω = 1 and the following
angles ψ = (π/2, π/6, π/4), where y, y1, y2 belong to ψ, respectively.

 

 

 
 

Fig. 7. The variation of the distance against time for  = 3 and the following angles 

 = (/2, /6, /4), where y, y1, y2 belong to  respectively. 

 

 
 

Fig. 8. The variation of the distance against time for the angle  = /4 and the 

following angular speeds  = 0.5, 1, 3, where y, y1, y2 belong to  respectively. 

 

Fig. 7. (Color online) The variation of the distance against time for ω = 3 and the following
angles ψ = (π/2, π/6, π/4), where y, y1, y2 belong to ψ, respectively.
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Fig. 7. The variation of the distance against time for  = 3 and the following angles 

 = (/2, /6, /4), where y, y1, y2 belong to  respectively. 

 

 
 

Fig. 8. The variation of the distance against time for the angle  = /4 and the 

following angular speeds  = 0.5, 1, 3, where y, y1, y2 belong to  respectively. 

 

Fig. 8. (Color online) The variation of the distance against time for the angle ψ = π/4 and
the following angular speeds ω = 0.5, 1, 3, where y, y1, y2 belong to ω, respectively.

 

 

 
 

Fig. 9. The variation of the distance against time for the angle  = /12 and 

the following angular speeds  = 0.5, 1, 3, where y, y1, y2 belong to  respectively. 

 

 

4    RESULTS AND DISCUSSION 

 

Figures 2-9 show the position y(t) of the particle against the time. In Figs. 2-4 we 

use the initial conditions (0) 5, (0) 0y y   to obtain the constant A and B given 

in Eq. (9) and then we plot y(t) against time. Fig. 2 shows the variation of position 

y(t) against time when angular speed is fixed and chosen to be  = 1, while the 

angle  is changing (here we consider  = /2, /6, /4, /12). On the other hand in 

Fig. 3 the variation of the position y(t) against time is plotted when the angular 
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In Figs. 5-7 we show the variation of the distance against time for different 

angles  = /2, /6, /4, where in Fig. (5) angular speed is taken  = 0.5, in Fig. (6) 
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of the distance against tine for different angular speeds  = 0.5, 1, 3, in Fig. (8) the 

angle  is chosen to be  = /4, while in Fig. (9)  = /12. 

In Fig. 2 one can see that for  = /2 the distance is increasing (the particle is 

moving away from the origin  (i.e. moving to the right) as it is expected because the 

wire is rotating in a horizontal plane, and it is not inclined. But for the angles  = 

/6,  /4, /12 the distance is decreasing. This is due to the fact that the bead is 
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In Fig. 3 it is clear that increasing  results in faster sliding towards the origin. 

Figure 5 shows that since the angular speed is small (i.e. 0.5  ) the variation in 

Fig. 9. (Color online) The variation of the distance against time for the angle ψ = π/12 and
the following angular speeds ω = 0.5, 1, 3, where y, y1, y2 belong to ω, respectively.
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In Fig. 3 it is clear that increasing ω results in faster sliding towards the origin.
Figure 5 shows that since the angular speed is small (i.e. ω = 0.5) the variation in
distance against time is not clear. In Figs. 6 and 7, when ω = 1, the variation in
distance against time is clearer than that when ω = 3.
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