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Sensing Botrytis cinerea in Tomato Using Visible/Near-Infrared

(VIS/NIR) Spectroscopy

Researched by: Khadija Mohammad Khames Najjar

Supervised by: Dr. Nawaf Abu-Khalaf
Abstract
Gray mold disease caused by Botrytis cinerea is considered one of the most
common diseases that affect tomato fruits and cause economic losses; early
detection of the disease can reduce 50% of the losses and increase food security.
Therefore, this study aimed to employ the visible/near-infrared (VIS/NIR)
spectroscopy to sense the presence of gray mold on tomato fruits in the early
stages. Identify of B. cinerea was carried out using the polymerase chain
reaction (PCR). In addition, 30 homogeneous tomato samples were collected
from three different varieties, i.e. Harver, Izmer and Ekram, 20 samples from
each variety were injected with the pathogen and 10 samples from each variety
were left as a control and were measured using the VIS/NIR spectroscopy daily

for five days.

Spectral data acquired from the VIS/NIR spectroscopy, with a range of 550-
1100 nm, were analyzed using principal component analysis (PCA). It was

found that the PCA on the second day after injection was able to distinguish



completely between infected and healthy samples before symptoms appeared,
also two PCs for VIS/NIR region explained approximately 99% of the total
variance in the third and fourth day. Moreover, two PCs explained 98% of the
total variance for PCA that applied for the average of infected samples for all
days. The PCA results showed the ability of VIS/NIR spectroscopy to detect

latent infections in tomato fruits as well as the early sensing of B. cinerea.

Furthermore, when observing the infected samples from these varieties to detect
which are resistant to gray mold disease, it was found that all of these varieties

were sensitive to the disease.



1 Introduction

1.1 General introduction

Tomato (Solanum lycopersicum E.) is one of the most common crops in the
world. According to FAO (2019), the estimated annual global production of
tomato crops is 182.3 million tons. China, India and Turkey are among the most
tomato producing countries in the world. The area planted with tomato in
Palestine was estimated at 12.000 dunum. Accordingly, tomato crop constitutes

1.5% of total agricultural land cultivated in Palestine (ARIJ, 2015).

In recent decades, the focus has increased on the health and quality of fruits (El-
Mesery et al., 2019), especially agricultural products that contribute to food
industries such as tomato (Cattaneo & Stellari, 2019). One of the factors that
affect the quality of tomato is the presence of a pathogen that causes enormous

economic losses (Hahn, 2009; Rizk, 2018).

Tomato plants infected by many pests and diseases, one of the most common
diseases that affect the post-harvest tomato crop is the gray mold caused by
Botrytis cinerea fungus (Elad et al., 2007; Hennebert, 1973), which causes
substantial economic losses (Petrasch et al., 2019). Infected tomatoes not only
cause economic losses at the level of agricultural industries but also reduce

farmer's income. To reduce losses, farmers tend to use pesticides as a remedy



for the problem, which affects health in general as well as negatively affects the

environment (Sannakki et al., 2011).

The detection of the pathogen at the early stage of infection might help to reduce
the losses, by excluding the affected fruits, thus reducing losses, especially after

harvest, also reducing the use of pesticides (Khaled et al., 2018).

There are many traditional methods, i.e. visual observation and laboratory-
based methods, used to examine the quality of the fruits and to detect the
pathogen. However, these methods are time-consuming, destructive and unable
to detect the latent symptoms (Liu, 2016). Hence, the need for fast,
environmentally friendly, non-destructive techniques that can be applied to
control fruit quality has increased. One of these technologies is visible/near-
infrared (VIS/NIR) spectroscopy (Cortes et al., 2019a). VIS/NIR technique is
the most promising alternative technology that can be applied to measure the
amount of reflected, absorbed and transmitted spectra from the sample to be

examined (Porep et al., 2015).

This technology was used in several fields, including agricultural, industrial and
others (Abu-Khalaf, 2015; Huang et al., 2008; Zaid et al., 2020). This method
is fast, inexpensive and can be used in production lines (Wang et al., 2015). On

the other hand, there are still some limitations for its use, the most important of



which is the need for an expert to extract results and build a model (Cremonez

etal., 2019).

The ability of the VIS/NIR spectroscopy to identify and sense the pathogen in
the early stages of the disease has been studied and achieved in many plants,
like tomato, eggplant and wheat (Feng et al., 2019; Khaled et al., 2018; Shen et
al., 2019). To our best knowledge, there are no previous studies on the use of
VIS/NIR spectroscopy with range 550-1100 nm for sensing the gray mold

caused by B. cinerea on tomato fruits.

1.2 Aim
This study aims to test the possibility of using the VIS/NIR spectroscopy to

sense the presence of B. cinerea in tomato in the early stage of infection.

1.3 Objectives
The objectives of this study are to:
1) Isolate Botrytis cinerea.
2) Sense (i.e. detect) the presence of Botrytis cinerea in tomato using
VIS/NIR spectroscopy.
3) Detect the most resistance and susceptible variety of tomato to Botrytis

cinerea according to time of decay.



2 Literature Review

2.1 Tomato crop importance and production

Tomato (Solanum lycopersicum E.) belongs to the Solanaceae family, is ranked
the second after potatoes (Solanum tuberosum L.) in terms of importance
(Quinet et al., 2019). The global production of tomato crops distributed as
follows: Asia accounts for 61.1% of global tomato production, whereas Europe
produced 13.5%, America produced 13.4% and Africa produced 11.8% of the

total tomato production (FAO, 2019).

The most consuming countries for tomato are China, India, North Africa, the
Middle East, the USA and Brazil, where per capita consumption is estimated

from 61.9 to 198.9 Kg per capita (Arah et al., 2015; FAQO, 2019).

Tomato contains many nutritional benefits, as it is rich in iron, citric acid,
vitamin C, A and K and antioxidants, i.e. lycopene and carotene (FAO, 2018;
Lietal., 2018; Nasir et al., 2015). Tomato is eaten either fresh or processed like
sauce and juices (Arah et al., 2015; Marti et al., 2016). It also has economic
importance, as the tomato industry is considered one of the most important
global food industries (Viskelis et al., 2015). Some factors affect the quality of
tomato and cause economic losses for the crop, including infection with fungal

diseases, especially after harvest. Gray mold (Botrytis cinerea) disease is one



of the most public diseases that affect tomato crops (Angioni et al., 2012; Shi

& Sun, 2017).

2.2 Food safety and quality

There is a difference between food safety and food quality, where the difference
depends on the objective of the market and the application. Sometimes food
safety is considered part of the food quality, but most of the time, it is difficult
to judge food safety by the naked eye, given that food safety is defined as the
absence of microbiological contaminants or toxic substances (Alander et al.,

2013).

Food quality can be defined in several ways, such as the availability of all
conditions for acceptance by the consumer, but there are different conditions
and standards from person to person, where the quality will be judged from a
personal perspective. There is another way to define quality according to use.
For example, for fresh consumption, homogeneity in size, maturity and lack of
defects is considered one of the most important criteria to determine the quality.
As for industrial production, colour and the absence of pathogens and pollutants
that cause economic losses are essential criteria for quality (EI-Mesery et al.,

2019; FAO, 2018; Sadilek, 2019).



The quality of fruits is determined by soluble solid content (SSC), titratable
acidity (TA), firmness, appearance, flavour, nutrition value, safety and absence

of pathogen (Goyette et al., 2010; Huang et al., 2018; Zhang et al., 2019).

2.3 Gray mold

Gray mold caused by Botrytis cinerea fungus is considered one of the most
important plant pathogens, as it was ranked among the top ten fungal pathogens
infecting the plant in the world. It was in the second-order after Magnaporthe
oryzae that causes rice blast (Dean et al., 2012; Scholthof et al., 2011). B.
cinerea is an airborne plant pathogen. It belongs to the Sclerotiniaceae family,

genus: Botryotinia and species: cinerea (Shirane et al., 1988).

Botrytis cinerea can attack more than 200 plants species, i.e. strawberry, sweet
pepper, tomato and cucumber (Elad et al., 2007). It can infect different parts of
the plant such as shoot, leaves, flowers and fruits (Droby & Lichter, 2007). The
disease begins in the stem and leaves even in the early stages of plant growth in
the green stages. Then, the spores spread to the fruits (Fillinger & Elad, 2016).
Where, it can cause soft rotting in fruits and vegetables (Liu et al., 2017;

Mohammadi et al., 2012).

The annual losses caused by B. cinerea were estimated at 10 billion dollars

worldwide for the various crops it attacked (Weiberg et al., 2013). While the



losses on the tomato crop were estimated between 15-25 million dollars

(Petrasch et al., 2019; Soylu et al., 2010).

Culture the crops out of its season in a greenhouse increases the possibility of
infection, especially tomato and cucumber crops (Gao et al., 2018; Pande et al.,
2001). The spores need 4-6 hours to grow and infect the plant if appropriate
environmental conditions are found. Cool and humid conditions (above 80%)
with a moderate temperature of approximately 18-23°C are ideal for the growth

and spread of B. cinerea spores (Elad et al., 2007; Hua et al., 2018).

The B. cinerea fungus enters the tissues in the pre-ripening stages and remains
quiescent until the environmental conditions become suitable for growth. Thus,
it can cause huge losses for fruits that appear healthy during the post-harvest

chain (Williamson et al., 2007).

Early detection of the pathogen before the appearance of symptoms is one of
the most important reasons that lead to avoiding economic losses, as well as
environmental protection from chemical pollutants, such as the use of

fungicides (Martinelli et al., 2015; Wu et al., 2008).



2.4 Methods for plant disease detection

Plant disease detection in the early stages not only helps to reduce losses, but
also helps to avoid the pathogen from spreading (Khaled et al., 2018). Several
ways are ranking from traditional to advance methods have been used to detect
plant diseases (Kandpal & Cho, 2014). These methods can be divided into
visual methods, laboratory-based methods and non-destructive techniques as

summarized in Figure 1 (Khaled et al., 2018; Rizk, 2018; Wu et al., 2008).

. » Naked eye observation
Visual methods ERseRtEisTet

Laborato r * Morphological methods (optical or electronic
microscopy)
based methods BV I iZe:N

» VIS/NIR spectroscopy
* Fluorescence spectroscopy

Non-destructive
methods » Electronic nose

Figure 1. Different methods of plant disease detection (Khaled et al., 2018).

Visual inspection is considered time-consuming, based on the appearance of
fungal symptoms and inefficient to detect latent infection (Ali et al., 2019).
Instead, laboratory-based methods, e.g. enzyme-linked immunosorbent assay

(ELISA), optical or electronic microscopy and polymerase chain reaction
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(PCR), can be used as an accurate method to diagnose and detect plant diseases
genetically or morphologically (Gowen et al., 2007; Huang et al., 2008).
However, there are limitations to use these methods in early plant disease
detection, such as labor-intensive and lack of rapidity for the detection of a plant
pathogen. Also, these methods are destructive and expensive (Alander et al.,

2013; Farber et al., 2019; Martinelli et al., 2015).

2.4.1 Using a PCR to identify plant disease pathogens

The PCR as a molecular method has been used to identify plant disease
pathogens since the 1980s (Bustin, 2017). The PCR technology replicates
deoxyribose nucleic acids (DNA) by using a specific short piece of DNA called
primer. The replication is carried out through three steps of different
temperatures, which are repeated every cycle: the first step is denaturation step
at temperature 90-95°C, the second step is annealing step at temperature 50-
60°C and the final step is extension step at temperature 72°C (Harmon, 2013).
The PCR is a sensitive, accurate and specific method that using in the
identification of plant pathogens, like fungi, bacteria and viruses. In which, the
use of a specific primer ensures accurate identification of pathogens
(Fahrentrapp et al., 2013; Farber et al., 2019). The PCR technique has been used
to identify many plant pathogens, such as Fusarium oxysporum f.sp, B. cinerea,

etc. (Harmon, 2013; Mirmajlessi et al., 2015).
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2.4.2 Non-destructive methods for plant disease detecting

After reviewing the drawbacks of previous methods for the detection of plant
disease in the early stage, increased attention has been given to non-destructive

methods to sense plant pathogens (Huang et al., 2008).

Non-destructive methods such as spectroscopic technology (Saeys et al., 2019),
electronic nose (Wilson, 2013) and image processing techniques (Qin & Lu,
2008) have recently been used in sensing plant pathogens. These methods,
including spectroscopy, have many advantages in detect plant diseases, like
rapidity, simplicity, high sensitivity and can be used under field conditions

(Cortes et al., 2019a; You et al., 2019).

Spectroscopic technology includes VIS/NIR spectroscopy (Abu-Khalaf &
Salman, 2013; Abu-Khalaf et al., 2004), mid-infrared absorption (Zhang et al.,
2017), Raman scattering (Lee et al., 2013), nuclear magnetic resonance (NMR)
(Martinelli et al., 2015), microwave absorption (Sun, 2010) and ultra-sound
transmission (ElI-Mesery et al., 2019) have been applied to detect plant diseases

in the early stage.

2.4.2.1  Visible/near-infrared spectroscopy
According to the American Society of Testing and Materials (ASTM), the

visible (VIS) spectrum covers the wavelength range of 400-750 nm, near-

infrared (NIR) covers the wavelength range of 780-2500 nm, mid-infrared
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(MIR) of 2500-25,000 nm and far-infrared (FIR) of 25,000-100,000 nm as

shown in Figure 2 (Khaled et al., 2018; Pasquini, 2018).

NIR contains two important regions, short-wavelength (SW-NIR) with range
750-1300 nm and long-wavelength (LW-NIR) with range 1300-2500 nm

(Mahlein et al., 2010).

Increasingfrequency
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» Increasing wavelength
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Hv‘i fRays 4 Microwaves Radio Waves
-— —
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Infrared | Infrared
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Figure 2. The electromagnetic spectrum and NIR demonstration (Sun, 2010).

The principle of the VIS/NIR action is based on molecular vibration between
C-H, O-H, S-H and N-H bonds of the main compounds (water, sugars,
chlorophylls, carotenoids, etc.), which caused by photon absorption (Kandpal

& Cho, 2014; Kumaravelu & Gopal, 2015). A photon can be absorbed only if it
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has the proper energy to stimulate one of the vibrational states of the molecule.
Though, the fundamental vibrations of these bonds occur in the infrared region;
therefore, the absorption in the VIS/NIR region is caused by overtones and
combinations of these fundamental vibrations. Where this yields absorption
peaks in the VIS/NIR region that are wide-ranging and overlapping (Nicolai et
al., 2014). At room temperature, organic compounds remain in continuous
motion (Teye et al., 2013). When these particles are exposed to electromagnetic
energy, they absorb energy that is proportional to fractionation mode (Beghi et

al., 2017).

Because each material differs in its components from the other, the resulting
spectrum is unique and distinct to each material. So, the VIS/NIR technology
can be considered a fingerprint (spectral signature) technique, that allows
applying in detect plant disease (Marin-Ortiz et al., 2020; Qu et al., 2015; Wang

et al., 2015).

The VIS/NIR spectroscopy can be applied in three different modes, they are
reflectance, transmittance and interactance. The main difference between them
is the location of the detector to the light source as shown in Figure 3 (Nicolali

etal., 2014).
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Reflectance mode is applied to obtain information about the fruit surface. It is
considered as the easiest mode because it does not need to touch the fruit and
has high energy that may reach 80% (Abu-Khalaf et al., 2004). Nevertheless, it
IS sensitive to the properties of the surface of the fruit, which affects the
measurements. As for the location of the detector and the light source, they are
located on the same side (Ncama et al., 2018; Schaare & Fraser, 2000). While
the transmittance mode is suitable for obtaining internal information of the fruit
and is considered less sensitive compared to reflectance. However, the amount
of light penetrating the fruit is small. The location of the detector and the light

source are located opposite each other (Liu, 2016).

Lastly, interactance mode is used to obtain internal and external information of
the fruit. As for the location of the detector and the light source, they are located
in parallel to each other (Khaled et al., 2018; Xu et al., 2009). The appropriate
mode is chosen based on the aim of the study. However, reflectance mods (R)
are usually applied and later converted to absorption (log 1/R) for later analysis

(He et al., 2005; Zude, 2008).
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Figure 3. lllustration of mode for obtaining spectral data in the VIS/NIR system (EI-Mesery
etal., 2019).

The VIS region contains information about fruit pigments, like chlorophyll and
carotenoids. While the NIR region gives more information about the water,
protein and carbohydrate content of fruits. Thus, the combination of these two
regions is better for obtaining accurate results for fruit examination (Butz et al.,

2005; Fahrentrapp et al., 2019; Khaled et al., 2018).
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2.4.2.2  Visible/near-infrared spectroscopy applications
The VIS/NIR technique has been used since the 1800s, as Frederick William

Herschel was the first to use it (Alander et al., 2013). Furthermore, in recent
decades, its use has increased (Farber et al., 2019). For example, it was used in
several fields, including quality control of fruits and vegetables (Abu-Khalaf &
Bennedsen, 2004; Farres et al., 2019; Nicolai et al., 2007), additionally using
portable VIS/NIR spectroscopy to control the quality of fruits (Dos Santos et
al., 2013; Skolik et al., 2019). Also, VIS/NIR spectroscopy was used for the
identification of nutrients in the plant (Sharon Ruth et al., 2018). Likewise, it
was used in the fields of livestock (Bahri et al., 2019), the identification of
microbiological contaminants in meat (Feng & Sun, 2013), also is used in soil
studies (Dos Santos et al., 2013). Moreover, it was used in the fields of medicine
and drug manufacturing (Luypaert et al., 2007). Many studies published in the
field of using VIS/NIR technique in agricultural industries to control the quality
of fruits for more than one application, such as off-line, at-line, on-line and in-
line measurements (Cortes et al., 2019a; Ncama et al., 2018; Nicolai et al.,
2014). The differences between these terms are as follows (Cortes et al., 2019b;

Dickens, 2010):

Off-line: checks are carried out in the laboratory away from production lines.

17



At-line: samples testing in a place very close to production lines, where random

samples are chosen manually for testing.

On-line: samples are selected from production lines and converted into a

recycling loop for testing and return to production lines.

In-line: analysis of samples within production lines (in situ).

2.4.2.3  Visible/near-infrared technology advantages and

limitations

The VIS-NIR technology has several advantages when compared to traditional
methods; it is non-destructive, fast, does not need to prepare samples, robust
method (El-Mesery et al., 2019), suitable for in-line and on-line mentoring
(Rizk, 2018), real-time analysis and suitable for checking physical and chemical
properties (Kumaravelu & Gopal, 2015). It can also be used to check hazardous
materials (Beghi et al., 2017), as well as suitable for examining the intrinsic
properties of agricultural commodities (Wang et al., 2015). Moreover, it is an
environmentally friendly technology (Garcia-Sanchez et al., 2017). On the
other hand, there are some limitations to its use. It needs an expert, because it
depends on the multivariate data analysis (MVDA) to extract the results, the
model construction needs many different samples. Nevertheless, these problems
can be overcome through data analysis (Brereton et al., 2017; EI-Mesery et al.,

2019). The temperature may affect the accuracy of the measurement (Peirs et
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al., 2003) and it needs a reference in the case of quality analysis (Nicolai et al.,

2007).

2.4.2.4  Visible/near-infrared spectral data analysis

The VIS/NIR spectra acquired contain a large number of data that need to be
analyzed to extract useful information from it (Farres et al., 2019; Qu et al.,
2015). So that, chemometrics (a combination between mathematical and
statically science) also called MVDA is considered the best way to analyze such

data complex (Amigo et al., 2013; Brereton et al., 2017).

2.4.2.4.1 Multivariate data analysis (MVDA)

Multivariate data analysis (MVDA) is a powerful method for extracting results
and useful information (Kumar & Sharma, 2017). It is defined as a
mathematical tool that relies on statistical equations to analyze the data (Hair et
al., 1998). MVDA includes a variety of methods for spectral data analysis, like
preprocessing and building calibration models for qualitative and quantitative
analysis (Beghi et al., 2018). Principal component analysis (PCA) (Guifang et
al., 2015), partial least squares (PLS) (Kawamura et al., 2017), linear
discrimination analysis (LDA) (Baranowski et al., 2012) and partial least
squares-discriminant analysis (PLS-DA) (Cen et al., 2007) are commonly

applied for spectral analysis. Many software programs are used for data
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analysis, such as the Unscrambler program (Abu-Khalaf & Salman, 2013; Zaid

et al., 2020).

2.4.2.4.2 Principal component analysis (PCA)

Principal component analysis (PCA) is a bilinear mathematical method and is
also known as a projection method (Wold et al., 1987). PCA model aims to
extract information from spectral data (X matrix) and ignore the noise (Farres
et al., 2019). The X matrix has many numbers of components called principal
component (PC), which is calculated according to the following equation

(Biancolillo & Marini, 2018):

X=TPT+E
Where T is scores matrix, P the loading matrix and E the error matrix
Each PC gives information about the variables. The first PC has the most
information and the last one has the least information (Rady et al., 2018). The
PCA analysis is used to distinguish between measured variables, through which
groups can be made of samples and explain the extent of similarity and

difference between samples, as shown in Figure 4 (Morawski & Mi-Okina,

2016). An illustration of the PCA working principle is shown in Figure 5.
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Figure 4. An illustration of how to separate the samples into groups using the PCA
(Pasquini, 2018).
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Figure 5. A diagram to illustrate the working principle of PCA projection (Biancolillo &
Marini, 2018).
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2.4.2.4.3 Pre-processing of spectral data

During the measurement, spectral data may be influenced by internal factors,
such as the occurrence of drift, or it may be affected by external factors, such
as heat, and these factors may cause missing some information and make high
noise in acquired spectra. Therefore, some preprocessing methods are needed
to obtain accurate results (Geladi et al., 1985; Wei et al., 2016). In which,
Savitzky-Golay (SG) smoothing is the most commonly used to remove high
noise from the acquired spectra (Savitzky & Golay, 1964). Moreover,
multiplicative scatter correction (MSC), which is used to remove slope variation
and correct the effect of random scattering (Isaksson & Naes, 1988). Standard
normal variate (SNV) is another technique that can be applied with the MSC or

alone to correct the scattering effect (Barnes et al., 1989; Steinier et al., 1972).

Also, first (1% D) and second (2" D) derivatives can be applied with Savitzky-
Golay transformation to reduce drift and scattering, respectively (Karstang &
Manne, 1992; Liu et al., 2010; Sun, 2010). These methods can be applied alone

or combined to obtain the best results (Wang et al., 2015).
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2.5 Visible/near-infrared spectroscopy application for plant

diseases detection
The ability of the VIS/NIR spectroscopy technique to distinguish between

infected and healthy plants was investigated (Hahn, 2009; Rizk, 2018; Saeys et
al., 2019; Sharon Ruth et al., 2018). Many studies have applied VIS/NIR
spectroscopy technology for detecting plant diseases at an early stage. Examples
of these diseases, B. cinerea on eggplant leaves (Wu et al., 2008), fire blight
disease on pome fruit (Bagheri & Mohamadi-Monavar, 2020) and olive leaf

spot (OLS) on olive leaves (Abu-Khalaf & Salman, 2013).

Moscetti et al. (2015) tested the ability of VIS/NIR spectroscopy with a range
of 400-2500 nm to detect bactrocera olea that infested olive fruit and they could
build a PCA model that explained 98% of the total variance for distinguishing
between infected and healthy samples. Likewise, Sankaran et al. (2012) applied
the VIS/NIR technique with a range of 350-2500 nm to detect laural wilt disease
on avocado leaves. The results of this study showed the ability of VIS/NIR
spectroscopy to differentiate between healthy and unhealthy samples, where the

accuracy of the PCA model was 80%.

Moreover, Bienkowski et al. (2019) studied the possibility of VIS/NIR
spectroscopy with a range of 400-1000 nm to detect late blight disease on potato

plants. In their study, the PCA model with accuracy 92% could distinguish
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between infected and uninfected samples. Furthermore, the VIS/NIR
spectroscopy with a range of 380-2500 nm was investigated to early sensing of
Fusarium oxysporum fungus on tomato leaves, where the PCA model with
100% could distinguish between healthy and unhealthy samples (Marin-Ortiz

et al., 2020).

In addition, Wu et al. (2008) used VIS/NIR reflectance spectroscopy with range
400-1100 nm to early detect of B. cinerea fungus that affects eggplant leaves.
The results of PCA showed the ability of the VIS/NIR spectroscopy to detect
the disease before symptoms appear, where it was able to classify infected and

healthy samples in the second day of injection with an accuracy of 80%.

These studies showed the possibility of using the VIS/NIR technique with a
range of 400-2500 nm to sense plant pathogens, especially in the early stages.
However, few studies have been published on the application of MIR with a
range of 2500-25,000 nm for plant disease detection. The reason may be due to

the high cost and complexity of MIR spectroscopy (Khaled et al., 2018).
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3 Materials and Methods
3.1 Fungal methods
3.1.1 Media preparation

Potato dextrose agar (PDA) media has been prepared in Kadoorie Agricultural
Research Center (KARC) laboratories according to the manufacturer
instructions available on the bottle (Difco laboratories, USA) (cat # 254920).
Where, 31.2 g of PDA powder dissolved in 800 ml of distilled water (DW),
autoclaved at 121°C for 1 h. After that, the media was left to cool for 15 min,
then poured in sterile petri-dishes (9 cm) and it was left to solidify.

Subsequently, it was stored at 4°C for B. cinerea fungus isolation.

3.1.2 Isolation and identification of the fungi

Samples of tomato infected with gray mold disease were collected from farms
in Tulkarm (Figure 6). A small portion of the sample was placed over fresh
PDA media, closed with parafilm, labelled and incubated at 22+1°C (Borges et
al., 2014). Pure fungal cultures were obtained by several sterile transfers of the
colony growth to fresh PDA media. The B. cinerea fungus was subcultured on
fresh PDA media every two weeks, by culturing 4 discs from old cultured
growth on fresh PDA media were kept in an incubator at 22+1°C to get full

growth (Figure 7).
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Figure 6. Some pictures of tomato samples infected by B. cinerea collected from farms near Tulkarm.

Figure 7. Pictures of pure B. cinerea fungus grown on PDA media.
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3.1.3 Morphological identification

The morphological characteristics of the B. cinerea were studied based on the
shape of fungal spores and conidia color (Elad & Shtienberg, 1995). For this
purpose, after 14 days of incubation, a small portion of fungus was used to
prepare a microscopic slide and observed by a light microscope (Labomed,
USA) (cat # PN: 9135000-901). Images were recorded with an Aiptekhd1080P

digital camera (Aiptek International GmbH, Germany).

3.1.4 Molecular identification

3.1.4.1 Fungal DNA extraction

The fungal DNA was extracted following a Dneasy plant mini kit (Qiagen,
Germany) (cat # 69104 and 69106). Briefly, 60-100 mg of seven days grown
fungi were scratched from PDA surface media using a sterile scalpel and were
placed in a sterile 1.5 milliliter microfuge tube. About 400 pl lysis buffer (AP1)
(cat # 154053337) was added to each tube. Tubes content was ground and
homogenized using pellet pestles cordless motor (Sigma-Aldrich, Z359971-
1EA, Germany) (cat # 3110) with sterilized tips, then 4 pl of RNase (cat #
154052147) were added to each tube. After that, the microfuge tubes were
incubated at 65°C water bath for 10 min with gently shaking for 2 times during
incubation. Then, 130 ul of neutralization buffer (P3) (cat # 154043250) was

added and placed the tubes in ice for about 5 min. Tubes were centrifuged for 5
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min at 14000 round per minute (rpm). The lysate was transferred into a sterile
2 ml collection tube. Then, the tubes were centrifuged for 2 min at 14000 rpm.
Afterward, the flow-through was transferred to a new microfuge tube and added
1.5 of the transferred volume from washing buffer 1 (AW1) (cat # 15405097)
and mixing gently. Then, 650 pl of the mixture was transferred to the DNase
mini spin column placed in a new 2 ml collection tube and centrifuged for 1 min
at 8000 rpm followed by removed the flow through. The spin-column was
placed in a new 2 ml collection tube and 500 pl of washing buffer 2 (AW2) (cat
# 15705041) was added and centrifuged for 1 min at 8000 rpm. The spin-
column was transferred to a new 1.5 ml microfuge tube with added 100 pL of
elution buffer (AE) (cat # 154050916). Then the tubes were left for 5 min at
room temperature 25°C and centrifuged for 1 min at 8000 rpm. In the end, the
tubes were kept at -20°C for further use after checking the DNA using gel

electrophoresis (Rigotti et al., 2002).

3.1.4.2 Polymerase chain reaction (PCR)

The B. cinerea was identified by PCR using three different specific primers sets
which are C729+/C729-, which was designed to specifically distinguish B.
cinerea from other Botrytis species and other fungi, where this primer was used
to amplify 700 bp of B. cinerea DNA fragment (Rigotti et al., 2002).
BC108F/BC563R primer set was designed to amplify internal DNA fragment
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500 bp of B. cinerea species (Fan et al., 2015; Rigotti et al., 2006).
BNTR1/BNTF1 primer pair that designed to detect small fragments of DNA
112 bp for B. cinerea DNA (Song et al., 2008). First, the primers were prepared,
where DNase free water was added to obtain 100 uM concentration. PCR was
performed in a 25 pl reaction mixture for each primer pair. Each mixture
containing 12.5 pl of 2X GoTaqVR Green Master Mix (Promega Corporation,
USA) (cat # 0000382528), 0.2 ul forward primer, 0.2 pl reversed primer, 1 pl
Fungal DNA and 11.1 pl from ultra-pure DNase free water (Biological
Industries, cat # 1710266, USA). One PCR mixture without any template DNA

was used as a negative control.

3.1.4.2.1 The PCR amplification program

The amplification program was performed using Verti™ 96 well thermal cycler
(cat # 4375786) (Applied Biosystems Company, California, USA),
programmed to perform an initial denaturation cycle at 94°C for 2 min, then 35
cycles of 94°C for 45 sec, the annealing step for different primer combination
(Table 1) for 50 sec, and 72°C for 50 sec and the final cycle at 72°C for 5 min.
To ensure the reproducibility of the DNA amplified fragments, all PCRs were

triplicated for each primer pair.
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Table 1. Information about the three specific primers set used to identify B. cinerea. Primer name, sequences, amplified bands size
(bp), annealing temperature (°C) and primers concentration (nmol).

Primer Sequences (5-3) Band size | Annealing | Concentration reference
(bp) temperature (nmol)
(°C)

C729+ (cat # 4425691) | (AGCTCGAGAGAGATCTCTGA) | 700-750 50 19.1 (Gindro et al., 2005)

C729- (cat # 4425692) | (CTGCAATGTTCTGCGTGGAA) 19.5
BC108+ (cat # 4425695) | (ACCCGCACCTAATTCGTCAAC) | 500-600 55 21.1 (Rigotti et al., 2006)
BC563- (cat # 4425690) | (CTGCAATGTTCTGCGTGGAA) 19

BTNF1 (cat # 4425693 (GCTTGACCCAGGCTTGAACQC) 112 50 21 (Song et al., 2008)
BTNRL (cat # 4425694) | (TGGGTCTGGTCCCGTGTAA) 17.2
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3.1.4.3  Gel electrophoresis for isolated DNA from B. cinerea

fungus

The isolated DNA running on 1.5% agarose gel. The gel was prepared by
weighing 1.5 g of agarose powder and it was completely dissolved in 100 ml of
0.5x Tris-borate-ethylenediaminetetraacetic acid (EDTA) (TBE) buffer using
the microwave. After that, the mixture was cooled at room temperature, then 4
puL of 1000 x gel red DNA stain (cat # 41003) was added with moving. The
mixture was poured in a tray (20*20 cm) of the Submarine Horizontal type
electrophoresis system. After that, 10 ul of the DNA with 2 pl of a blue orange
loading dye 6x (cat # 043043) and 2.5 ul of 100 bp molecular marker ready to
use (RTU) (cat # DM003-R500) were loaded carefully in a well of solidified
gel. The device (Helixx Mupid- exU, USA) was run for 60 min at 70 volts. After
that, the DNA was viewed under ultraviolet (UV) illuminator device (Uvitec,

cat # 1210234, Cambridge) and gel documentation system.

3.1.4.4  Gel electrophoresis for PCR products
The gel was prepared by weighing 2 g of agarose powder that dissolved in 100

ml of TBE buffer using the microwave. After that, 4 pl of 1000x gel red was
added and the suspension was poured in (20*20) tray of the Submarine
Horizontal type. Then, 5 pl of PCR products was loading and 2.5 ul of 100 bp

DNA RTU ladder (cat # DM003-R500) was used as a molecular marker. The
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device was run for 3 h at 70 volts. Then, the bands were viewed and documented
using SynGene gene tool system (Synoptics Ltd., Cambridge C, UK) for image
gaining and documentation. Besides, the PCR products were analyzed using gel
SynGene Ver. 4.3.5 (Synoptics Ltd., Cambridge C, UK) analysis software to

determine the molecular weight of bands.

3.2 Tomato sampling

Samples were collected according to the recommendation of the Tulkarm
Agriculture Directorate. Ninty tomato samples of three local varieties (i.e.
Harver, Izmer and Ekram), each variety has 30 samples were collected from a
farm in Tulkarm, Palestine. Tomato crop was grown in a greenhouse with
standard cultivation parameters. The samples were harvested free from disease
or defects and with 70% maturity as shown in Figure 8 (Feng et al., 2019). All
samples were approximately homogeneous in size (Abu-Khalaf, 2015). The
samples were placed in cardboard boxes and transferred directly to KARC
laboratories, where they were stored at room temperature of 25+1°C for further

process.
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Figure 8. Samples of three variates A: Ekram, B: Harver, C: 1zmer as they collected from a local farm in Tulkarm.

33



3.3 Infection tests of tomato by B. cinerea

3.3.1 Prepare the B. cinerea suspension

The fungus suspension was prepared according to Zhang et al. (2014) protocol.
Where, fourteen days after cultured the fungi, the spores were harvested by
immersing the culture with KH,PO4-glucose solution (0.43 g of KH,PO,4 (10
mM), 0.495 g of glucose (10 mM) and 125 ul of Tween-80 for 250 ml) for 5
min with gently moving the surface by a sterile glass rod. Then, the suspension
was filtered using two layers of cheesecloth and placed in a sterile 50 ml test
tube, this step was repeated more than once to ensure the most significant
number of spores are obtained. Then the concentration of spores was adjusted
to 5*10* per ml under the optical microscope (Labomed, USA) (cat # PN:

9135000-901) using a hemocytometer.

3.3.2 Tomato samples sterilization and injection

The collected tomato samples were immersed with a 2% sodium hypochlorite
(NaOCl) for 2 min. Then it was washed with sterile DW. After that, samples
were left to dry at room temperature for 2 h. Then, 20 samples of each variety
were inoculated with the spore's suspension (the suspension mixed by Vortex
before using). Four wounds were made in each fruit in the area close to the neck,
where 10 pl were injected into each wound using a sterile needle. Control

samples (i.e. 10 samples of each variety) were injected with KH,PO4 solution,
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where 10 ul were injected into each one of four wounds made in each fruit. This
method of sterilization and injection has been applied as described by Borges et

al. (2014) and Zhang et al. (2014).

3.3.3 Storage condition

The samples were examined daily using VIS/NIR spectroscopy, where the
samples (infected and control) were stored in plastic containers (30 * 22 cm)
and covered with plastic film. Samples were sprayed with sterile DW to provide
adequate moisture (about 90% relative humidity, which is optimal to B. cinerea)

after each examination and were kept at 25£1°C (Borges et al., 2014).

3.4 Detection the most resistance and susceptible of tomato

varieties to B. cinerea according to time of decay

To determine differences in resistant to the pathogen among the three varieties
(i.e. Harver, Izmer and Ekram), incubated samples with the B. cinerea were

daily monitored for five days of incubation successively.
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3.5 Visible/near-infrared spectroscopy measurement
The VIS/NIR spectroscopy with a USB 2000+ miniature fiber optic

spectrometer (Ocean Optics, USA), Vivo light source and 50 pm fiber optics
probe was used for sensing B. cinerea. A spectra range for VIS/NIR
spectroscopy 550-1100 nm and a resolution of 0.35 nm full width at half
maximum (FWHM). Besides, it has a 2-MHz analog to digital (A/D) converter,
a 2048-element CCD-array detector, also a high-speed USB 2.0 port. Vivo
system has four tungsten-halogen bulbs, and this allows the user to use one or
more bulbs. The four halogen tungsten light sources make the Vivo a high-
powered VIS/NIR source, which allows a shorter integration time than
conventional methods (Ocean Optics, USA). To avoid the risk of overheating
the sample, this device equipped with a capable cooling fan. The USB2000+
can be controlled by Spectra Suite software. Tomato samples (infected and
healthy samples) were measured for each variety daily for five days (i.e. zero-
days, first day, second day, third day and fourth day of inoculation). The
integration time used in every day was 300 us. Each sample was examined three
times, to confirm the stability of the spectra, and then the average was taken for
the three measurements. The VIS/NIR analyses were done in the diffuse
reflectance mode and then recorded as absorbance (i.e. log (1/R)). A diffuse

reflectance standard for the system was used every 10 samples during the
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experiment to ensure the stability of the measurement. The calibration of the
light was done in the beginning by closing the entrance of incoming light from
a fiber probe to the USB2000+ miniature fiber optic spectroscopy using a plastic
cap. At the end of all measurements, the acquired spectra were stored for a later
process, where the measurements were carried out at room temperature 25+2°C
and with relative humidity 60% according to the recommendation of

manufacture.

3.6 Spectral data analysis

The Unscrambler program (version 10.4, CAMO Software AS, Oslo, Norway)

was used for spectral data analysis.

3.6.1 PCA analysis
To study the ability of VIS/NIR spectroscopy to distinguish between infected

and control samples in the early stage of B. cinerea growth, PCA models were

carried out for VIS/NIR region (550-1100 nm).

3.6.2 Spectra pre-processing

Different pre-processing techniques for raw data were carried out before
plotting the spectra curve, such as SG smoothing, MSC and 1% D (Carlos et al.,

2019).
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3.6.3 Prediction test based on PCA models

After establishing the PCA models, new tomato samples were collected to
check the ability of the PCA model to predict new samples. Where some of
them were injected with B. cinerea in the same way mentioned in this study and
others were left as a control. After that, the samples were examined using the
VIS/NIR spectroscopy daily, starting from the first day of the injection (i.e. after

24 h).
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4 Results and Discussion
4.1 ldentification of B. cinerea fungus

4.1.1 Morphological identification

The B. cinerea was identified morphologically, as shown in Figure 9. Where
results obtained were similar to previous studies that defined the B. cinerea
based on the spore shape using an optical microscope (Leyronas et al., 2012;

Sharma & Pandey, 2010; Takam et al., 2019; Williamson et al., 2007).

Figure 9. Morphological characteristics of B. cinerea. A: spore shape under a light
microscope with 4X, B: spore shape with 10X, C: spore shape with 40X, D: spore shape with
oil lens.
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4.1.2 Molecular identification using a PCR
4.1.2.1  Total DNA extraction

The total DNA extracted from B. cinerea isolates is shown in Figure 10 using a
Dneasy plant mini kit (Qiagen, Germany). The results showed the presence of
an amount of DNA in the three samples that were isolated from it, while nothing

appeared in the negative sample.

4.1.2.2  Evaluation of primer to detect B. cinerea

Results from three specific primers set PCR assays indicated that the primers
set (C729+/C729-, BC108+/BC563- and BNTF1/BNTR1) exhibited high
specificity in detecting B. cinerea as shown in Figure 11. The primer set
C792+/- generated fragment approximately 700 bp in DNA isolated fungal
samples from tomato, indicating that the isolate was B. cinerea as confirmed by
Rigotti et al. (2002). Also, the primer set BC108+/BC563-, which was designed
to identify B. cinerea, amplified a 599 bp fragment from DNA isolated fungal,
conforming that the isolates were B. cinerea (Fan et al., 2015; Narayanasamy,
2010; You et al., 2019). Besides, the primer pair BNTF1/BNTR1, which was
designed to amplify an internal fragment for B. cinerea generated
approximately 110 bp fragments in DNA isolated samples (Song et al., 2008).
In all PCRs no generated in negative samples. In addition, the molecular weight

of bands was determined using SynGene software program Ver. 4.3.5
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(Synoptics Ltd., Cambridge C, UK) as shown in Table 2. These results are in

agreement with previous studies (Rigotti et al., 2002; Rigotti et al., 2006; Song

et al., 2008).

Figure 10. Agarose gel electrophoresis documented photo of total DNA extracted from B.
cinerea fungus that isolated from tomato samples using a Dneasy plant mini kit (Qiagen, cat
# 69104 and 69106, Germany). Lane 1-3: DNA isolated from B. cinerea samples. Lane 4:
negative control. M: 100 bp DNA marker ready to use (RTU).
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Figure 11. Agarose gel electrophoresis documented photo of PCR products using three
specific primer sets (C729+/C729-, BC108+/BC563- and BNTF1/BNTR1) for detection B.
cinerea. Lane 1: specific primer set C729+/C729-. Lane 2: negative sample. Lane 3: specific
primer set BC108+/BC563-. Lane 4: negative sample. Lane 5: specific primer set
BNTF1/BNTRL. Lane 6: negative sample. M: 100 bp DNA marker ready to use (RTU).
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Table 2. Bands amplified size by using three different specific primers to identify B. cinerea according to the 100 bp DNA ladder.

Track 1 Track 2 Track 3 Track 4
Mol. Mol. Mol. Mol.
weight Height Quantity | weight Height | Quantity | weight Height | Quantity | weight Height Quantity
3000 1.198 40
1500 31.224 70
1000 20.243 50
900 22.035 40
800 7.019 40
700 6.684 30 673.755 | 90.182 | 126.41
600 7.763 30 599.373 96.596 143.23
500 25.583 90
400 32.412 40
300 31.154 30
200 21.212 40
100 18.492 40 105.126 | 87.311 104.53

Track 1: molecular size marker (100 bp DNA ready to use ((RTU) ladder, cat # DM003-R500).

Track 2: band from specific primer set C729+/C729-.

Track 3: band from specific primer set BC108+/BC563-.

Track 4: band from specific primer set BNTF1/BNTR1.
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4.2 Spectral characterization

Representative samples were chosen and the spectra curves were carried out for
VIS/NIR region with a range of 550-1100 nm. Because the acquired spectra are
affected by external factors i.e. heat, as well as the properties of the fruit itself,
which leads to noise. It was necessary to apply some preprocessing methods
before plotting the spectra curves. Savitzky-Golay (SG) smoothing was carried

out as a first step (Mogollon et al., 2019).

When the fruits are infected, some internal and external changes occur as a
result of the growth of the fungus or pathogen. These changes make the spectra
acquired from the healthy sample differ from the affected sample. This confirms
that VIS/NIR spectroscopy works as a fingerprint. Therefore, there was no
difference between the spectra of the infected and healthy samples in zero-day

of injection as shown in Figure 12.

Whereas, in the first day and second day, i.e. 24-48 hours after injection, where
internal changes (e.g. water content and carbohydrate content) started as a result
of fungus growth. It became possible to distinguish between the spectra from
infected and healthy samples as shown in Figure 13 and Figure 14. Also, the
difference became more apparent as the growth of the fungus increased as
shown in Figure 15 and Figure 16. These results are in agreement with previous
studies (Gamon & Surfus, 1999; Mahlein et al., 2010; Sankaran et al., 2011).
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Furthermore, when internal changes in the affected fruit occur before external
changes (before symptoms appear), the acquired spectra are different (Sasaki et
al., 1998; Wu et al., 2008). This is what was observed when comparing the
spectra of affected samples from zero-day to the fourth day of injection, where
the difference was clear between the spectra as shown in Figure 17. To remove
slope variation, MSC was carried out to the same spectra as shown in Figure
18. These results are in arrangement with several previous studies (Shen et al.,

2019; Yuan et al., 2014).

First derivatives (1 D) with Savitzky-Golay (SG) were carried out to reduce

drift and noise in acquired spectra from infected samples as shown in Figure 19.

Tomato contains a high percentage of water approximately 90-95% (Rizk,
2018). The highest absorbing waves (i.e. bands at 819, 945, 969, 972, 989 nm)
were in the NIR region as a result of vibration in the O-H bond (Liu, 2016).
Also, the result of these absorption bands due to the high content of
carbohydrates (C-H bond) and proteins (N-H bond) (i.e. bands at 1013 and 1087
nm) (Chen et al., 2008; Lopez et al., 2017). While in the VIS region the highest
absorption bands (560, 580 and 606 nm) were due to pigments i.e. chlorophylls
and carotenoids. The weak absorption bands associated with the small content

of carbohydrates and proteins that were consumed by the fungus. These results
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are in agreement with previous studies (Abu-Khalaf, 2015; Flores et al., 2009;

Shen et al., 2019; Xu et al., 2009).

The spectra can be affected by the external factors, as well as the properties of
fruits such as the water content and others as mentioned previously. Moreover,
as the number of samples increases, it becomes difficult to distinguish if they
are infected or intact through the spectra only. Therefore, MVDA e.g. PCA, is

needed to extract useful information from the acquired spectra.
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Figure 12. A representative spectral curve of VIS/NIR (550-1100 nm) in zero-day of
inoculation. Control sample (blue) and infected sample (red), with Savitzky-Golay (SG)

smoothing preprocessing effect.
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Figure 13. A representative spectral curve of VIS/NIR (550-1100 nm) in the first day of
inoculation. Control sample (blue) and infected sample (red), with Savitzky-Golay (SG)

smoothing preprocessing effect.
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Figure 15. A representative spectral curve of VIS/NIR (550-1100 nm) in the third day of
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smoothing preprocessing effect.
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Figure 16. A representative spectral curve of VIS/NIR (550-1100 nm) in the fourth day of
inoculation. Control sample (blue) and infected sample (red), with Savitzky-Golay (SG)

smoothing preprocessing effect.
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Figure 17. A representative typical VIS/NIR (550-1100 nm) spectral curve of infected
samples for all days of inoculation. Zero-day (blue), the first day (red), the second day
(green), the third day (purple) and the fourth day (brown), with Savitzky-Golay (SG)
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Figure 18. The effect of multiplicative scatter correction (MSC) preprocessing on the spectra
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4.3 PCA

Principal component analysis (PCA) was carried out for the VIS/NIR region
(550-1100 nm) of the zero-day, first day, second day, third day and fourth day

of inoculation the fungi.

In zero-day, two principal components (PCs) for VIS/NIR region explained
81% of the total variance. In this PCA, the results showed no distinguishing
between control and infected samples as shown in Figure 20. In the first day,
two PCs for VIS/NIR region explained 74% of the total variance. Where the
results showed the ability of VIS/NIR spectroscopy to distinguish between
infected and control, but the two groups (i.e. infected and control group) are still
close to each other, as shown in Figure 21. In the second, the third and the fourth
day the two PCs for VIS/NIR region explained about 99% of the total variance

as shown in Figure 22 to Figure 24.

Our PCA results showed the possibility for VIS/NIR spectroscopy to
distinguish between healthy and unhealthy samples after 24 hours (i.e. one day)
of inoculation. While the visual symptoms began to appear in the third and
fourth days of injection. Also, the PCA models for the second, third and fourth
day showed that the control samples were completely separated from infected
samples, where it was observed that the distance began to increase between the
two groups (i.e. control and infected group).
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In addition, the PCA of all day (i.e. zero-day, the first day, second day, third
day and fourth day of inoculation) was carried out after calculating the average
for the infected samples (i.e. 60 infected samples for each day were divided on
3 (number of varieties)). Where two PCs for VIS/NIR region explained 98% of
the total variance as shown in Figure 25. The results showed the ability of the
PCA to separate between zero-day and the first day with some overlap, but there
iIs a complete separation between the second, third and fourth day of the
injection. Also, the distance between zero-day and the first day increased from
the second day. Moreover, the distance becomes more increase between the
second and third days of infection. All the PCA results are in agreement with
previous studies (Bagheri & Mohamadi-Monavar, 2020; Marin-Ortiz et al.,

2020; Mogollon et al., 2019; Moscetti et al., 2015; Sankaran et al., 2011).
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Figure 20. Scores plot of PCA model based on VIS/NIR (550-1100 nm) spectra for zero-day.
Control (blue) and infected (red). Two PCs explained 81% of the total variance.
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Figure 21. Scores plot of PCA model based on VIS/NIR (550-1100 nm) spectra for the first

day.

PC-2 (4%)

Control (blue) and infected (red). Two PCs explained 74% of the total variance.

nnmy

0 10 20 a0 40

PC-1(96%)

50 -40 a0 200 10

B Control @ Infected

Figure 22. Scores plot of the PCA model based on VIS/NIR (550-1100 nm) spectra for the
second day. Control (blue) and infected (red). Two PCs explained 100% of the total variance.
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Figure 23. Scores plot of the PCA model based on VIS/NIR (550-1100 nm) spectra for the
third day. Control (blue) and infected (red). Two PCs explained 99% of the total variance.
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Figure 24. Scores plot of the PCA model based on VIS/NIR (550-1100 nm) spectra for the
fourth day. Control (blue) and infected (red). Two PCs explained 99% of the total variance.
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4.3.1 Prediction test

The prediction test of the PCA models was carried out for the first day of the
VIS/NIR region (550-1100 nm), as shown in Figure 26, where the VIS/NIR
spectroscopy was able successfully to predict the new sample based on the PCA

model for the VIS/NIR region at this stage.

Prediction test was also performed for the second and third day (Figure 27 and
Figure 28), where the results showed the ability of the model to distinguish

successfully between the new infected and healthy samples.

Finally, the prediction of the PCA model was applied to the VIS/NIR region for
the fourth day, as shown in Figure 29, and the results showed its ability to
distinguish between the new samples. The prediction test was carried out in
much previous research to examine the ability of the PCA model to predict any

new sample (Bair et al., 2006; Ghasemi et al., 2019).
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Figure 26. Prediction test for unknown sample based on the PCA model for the first day for
VIS/NIR (550-1100 nm). Two PCs for calibration set explained 74% of the total variance
and two PCs for projection set explained 91% of the total variance.
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Figure 27. Prediction test for unknown samples based on the PCA model for the second day
for VIS/NIR (550-1100 nm). Two PCs for calibration set explained 100% of the total
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Figure 28. Prediction test for an unknown sample based on the PCA model for the third day
for VIS/NIR (550-1100 nm). Two PCs for calibration set explained 99% of the total variance
and one PC for projection set explained 99% of the total variance.
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Figure 29. Prediction test for unknown samples based on the PCA model for the fourth day
for VIS/NIR (550-1100 nm). Two PCs for calibration set explained 99% of the total variance
and two PCs for projection set explained 100% of the total variance.
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4.4 Resistant variety to gray mold according to time decay

The results showed that all varieties of tomato used in the study (Harver, lzmer
and Ekram) are sensitive to gray mold disease, as shown in Figure 30, where
symptoms appeared on these varieties with the same period approximately and
the same degree of infection. As previously discussed, the tomato crop is
sensitive to gray mold disease (Dean et al., 2012; Smith et al., 2014; Williamson

et al., 2007).

However, there are no local studies to prove the resistance of these varieties to

gray mold disease, especially in the post-harvest chain.

Based on the information available from the Ministry of Agriculture, gray mold
disease was recorded as the most common disease affecting tomato fruits, and

there is no resistant variety available for it among these used varieties.
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Tomato The first day The second day The third day The fourth day The fifth day
varieties/days of
infection

Harver

W dewr yale, g

Izmer

Ekram

Figure 30. Illustration to compare the appearance of gray mold disease symptoms on tomato varieties to determine which ones are
resistant and which are sensitive during storage days.
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5 Conclusion and recommendation
In conclusion, specific primers, i.e. C729+/C729-, BC108+/BC653- and

BNTF1/BNTR1, could identify B. cinerea fungus using PCR technique. Also,
the results of the study showed that there is no variety resistant to gray mold

disease that affects tomato fruits among the three varieties used in this study.

The non-destructive VIS/NIR technique was able to sense the B. cinerea fungus
in early-stage on tomato fruits. Moreover, VIS/NIR spectroscopy could predict

a new sample, as well as could classify the healthy and unhealthy sample.

In addition, the results open a wide door for using a portable VIS/NIR
spectroscopy in agricultural industries (on-line and in-line) to ensure that fruits
are free from diseases. And it suggests the probability of using this study for
development on-line optical system that can be applied directly in the field for

the early detection of infected plants.

For future studies, diversity in plant diseases, as well as diversity in plant
varieties, is required to build more models using VIS/NIR spectroscopy
combined MVDA techniques for early detection of plant disease. Furthermore,
work to find a tomato variety resistant to gray mold disease is needed to reduce

the economic losses.
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