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Abstract 

Material constitutive models often include internal variables in order to capture realistic mechanical effects such as viscosity. 
Recent work for compressible hyperelastic material is developed based on applying the argument of calculus variation to two-
factor multiplicative decomposition of the deformation gradient. The finite element formulation for this new treatment is 
developed, however, the implementation sheds light on a special form of constitutive model. In particular, the material model 
is a function of the first and third invariants of new quantities derived from the counterparts of the multiplicative decomposition. 
These new quantities are defined in analogy to the right Cauchy Green tensor. This work demonstrates the required treatment 
for a special material model that is formulated using the second and third principal invariants of these new derived quantities. 
Mainly, the treatment simplifies the internal balance equation that emerges from the variational treatment. This facilitates the 
linearization procedure of this new formulation for internally balanced compressible hyperelastic material. The present work 
permits the future use of more complicated internally balanced hyperelastic models. 
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1. Introduction 

Large deformation constitutive models can be expressed in 
terms of deformation gradient  multiplicative 
decompositions [1, 2, 3] such as 

                               (1) 

The usual treatment is that  models elastic response and it 
is associated to the rules of variational calculus. The  
portion then models inelastic response usually by means of 
a time dependent evolution law. This multiplicative 
decomposition serves to pertain particular portions of  to 
specific parts of the material response. It has been widely 
used in plasticity [4, 5, 6, 7], viscoelasticity [8, 9], growth 
and remodeling of biological tissues [10, 11, 12, 13]. The 
implementation procedure of these material models in the 
frame of nonlinear finite element is well established [14, 15, 
16, 17]. 

A new scheme of viewing incompressible hyperelastic 
material response is introduced in [18, 19]. In fact, the 
arguments of variation are applied to both portions of the 
deformation gradient decomposition. The decomposition 
itself is determined on the basis of an additional internal 
balance equation that emerges naturally from the variational 
treatment. Further theoretical treatment for compressible 
hyperelastic model is presented in [20]. The total Lagrange 
formulation of this new treatment is derived by linearizing 
the achieved weak form with respect to both portions of 
multiplicative decomposition [21]. Modeling material 

response using similar procedure presented in this paper can 
be found in [22, 23, 24, 25, 26]. 

The demonstrated implementation in [21] for 
compressible hyperelastic material focused on a special 
form of internally balance Blatz  Ko material model 

. Here ,  and  are the principal 
invariants of  (and ) while ,  and  
are the principal invariants of  (and ). 
These new quantities , ,  and  are second order 
symmetric tensors and they are defined in analogy with 

 and . This work sheds light on the 
mathematical treatment that is required to implement a 
material model that has the form of  in total 
Lagrange and update Lagrange formulations. 

2. Continuum Mechanics 

Strain energy function for isotropic hyperelastic material 
can be expressed in terms of the principal invariants such as 

.To implement this type of material model in 
total Lagrange formulation, it is required to derive two 
important quantities that are Second Piola  Kirchhoff stress 
tensor and material elasticity tensor. The second Piola  
Kirchhoff  stress can be written as 

                           (2) 

The fourth order material elasticity tensor  is obtained by 
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             (3) 

a detailed definition for  in terms of principal invariants 
can be found in [27]. 

For Update Lagrange formulation, it is required to 
implement Cauchy stress and spatial elasticity tensors. 
Cauchy stress tensor  is obtained using a Piola 
transformation of the second Piola Kirchhoff stress tensor 
such as 

                             (4) 

where . The Piola transformation [28] is a push 
forward operation that is scaled by . The spatial elasticity 
tensor  is defined in via Piola transformation of  [29, 27]. 
It is written in component form as 

                                 (5) 

3. Internal Balance 

A new scheme of viewing incompressible hyperelastic 
material response is introduced in [18]. The arguments of 
variation are applied to both portions of the deformation 
gradient decomposition. The decomposition itself is 
determined on the basis of an additional internal balance 
equation that emerges naturally from the variational 
treatment. A review of the compressible hyperelastic 
scheme [20] is summarized here. It has been shown that the 
second Piola  Kirchhoff  stress is obtained as 
consequence of applying the argument of variation with 
respect to . It can be written as 

  (6) 

where . Notice that  is a function of  and 
. The decomposition of the deformation gradient is found 

by solving an internal balance equation that arises from the 
variation with respect to . The internal balance equation is  

                               (7) 

where  is an internal balance tensor 

                            (8) 

with individual parts 

,                            (9) 

                                 (10) 

                          (11) 

                             (12) 

                                   (13) 

                                          (14) 

where  and  is the  second order 
identity tensor. Notice that  is relatively complicated 
compared to other individual parts of . It is tedious task to 
differentiate  with respect to  and  during linearization 
procedure. This leads to avoid the use of strain energy 
function based on . To overcome this difficulties, the 
following procedure is applied to simplify the expression of 

. First of all, the push forward operation is performed 

 (15) 

then Cayley  Hamilton equation is applied to simplify (15) 
to 

                                         (16) 

and finally (16) is pulled backward to get  

          (17)  

now   has more practical expression by virtue  of  (17) 
such as  

          (18) 

For updated Lagrange, the Cauchy stress for internally 
balanced scheme is defined by push forward of (6) as 

          (19) 

Similarly, the internal balance equation (7) becomes  

                          (20)  

where  is the internal balance tensor with the individual 
parts 

                                  (21)  

these individual parts of  are listed in the appendix. 

4. Blatz  Ko Model 

The generalized Blatz  Ko [30, 31, 32] can be written as  

                                            (22)  

where  and . Blatz  Ko model has 
three material parameters namely Poisson's ratio , shear modulus 

 and volume fraction of voids in foam rubber material . In this 
work a special case of (22) is achieved [30, 31, 33] by applying 

 and such as 

                                             (23) 

Substituting (23) into (2) to get Second Piola  Kirchhoff 
stress 

       (24)  

where . The elasticity tensor is obtained 
by substituting (23) into (3)  

                                          (25)  

where  is the dyadic operator and  operator has the same 
definition given in [27], further details can be found in the 
appendix. Now substitute (24) into (4) to obtain Cauchy 
stress 

                           (26) 

The spatial tensor of elasticity is obtained by the virtue of 
(5) as  

 (27) 
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5. Blatz  Ko Internal Balance Model 

The form of internally balanced material model is motivated 
by special case of Blatz  Ko model 

(28)  

where  is a positive material parameter that quantify the 
contribution of two  factor multiplicative decomposition 
(1). The limits  and  retrieve the hyperelastic 
behavior in full nonlinear strain range [20]. An equivalent 
form of (28) is used in [34] to investigate uniaxial loading 
by solving nonlinear boundary value problem. In this work, 
the finite element formulation of (28) is presented that 
permits general loading scenarios. 

The Piola  Kirchhoff stress of internally balanced 
material (28) is obtained by (6) 

                                   (29)  

where  and . The stress 
tensor  is coupled to internal balance equation  
that is achieved by the virtue of equations (9),(11)  (14) 
and (18) 

                                (30)  

where  and . This quiet form of internal 
balance equation is obtained by using the simplified form of 

 in (18) instead of (10) and further manipulation using 
Cayley  Hamilton equation. The push forward of (29) and 
the use of Cayley  Hamilton equation give a simplified 
form of Cauchy stress as   

           (31)  

and it is coupled to  that is  

                          (32) 

It has been noticed that Piola  Kirchhoff stress (29) has 
still complicated form, a simplified form of (29) is required 
to avoid lengthy linearization procedure. To achieve that 
(32) is multiplied by , then it is rearranged as 

                                         (33)  

then substitute (33) in (31) to obtain another and equivalent 
form of Cauchy stress such as 

                         (34)  

finally pull back the new form of Cauchy stress to get 

                         (35)  

Notice that Piola  Kirchhoff stress (35) has relatively 
simple form compared to (29). 

6. Linearization 

The finite element formulation of internally balanced 
compressible hyperelastic material is demonstrated in [21]. 
It is based on calculating a condensed fourth order elasticity 
tensor  that is defined as 

                                         (36) 
The tensors  and  are obtained by differentiating 
second Piola  Kirchhoff stress (6) with respect to  and , 
respectively. The terms  and  are obtained by 

differentiating internal balance tensor (8) with respect to  
and , respectively. 

Concerning the material model of interest in this work 
(28), these individual parts of (36) become 

 (37) 

                   (38) 

                                 (39) 

                                                                      (40) 

where ,  and  . The 
spatial condensed elasticity tenor  for the updated 
Lagrange formulation can be obtained either by pushing 
forward of  or by performing push forward operation 
on each individual parts (37)  (40) then apply condensation 
procedure. 

7. Solving Internal Balance Equation 

It is an essential step to solve the internal balance equation 
in order to calculate the stress and elasticity tensor. This is 
carried out by solving (30) for  given the value of  or 
solving (32) for  given the value of . Here it is chosen to 
solve (32). The multiplication of (32) by , then rearranging 
it, gives a simplified form of the internal balance equation  

                          (41) 

It can be shown by further manipulation of (41) that the 
tensor  and  have the same orthogonal eigenvectors. 
Then, internal balance equation (41) can be expressed in 
principal frame using eigenvalues of  as  and 
eigenvalues of  as  [35]. The internal balance 
equation in principal frame are expressed as a set nonlinear 
equations  

                              (42) 

                              (43) 

                                 (44) 

Newton  Raphson iterative procedure is used to solve (42) 
 (44). 

8. Results and Discussion 

The conventional hyperelastic Baltz  Ko model (23) and 
internally balanced Blatz  Ko model (28) are implemented 
in . It is in  house  finite element package for 
updated Lagrange formulation written by Prof. R.L. Taylor, 
University of California at Berkeley. A cube of a unit length 
is meshed by 8 nodes brick element with three degrees of 
freedom per node. The cube is discretized by eight elements 
in total . The homogeneous deformations 
namely uniaxial and simple shear are performed to 
investigate the response of the material models. 

The uniaxial loading is given as 
 with corresponding stress 

where  are principal stretches. The 
material is stretched in principal direction one and it is free 
to contract in the other principal directions. The achieved 
uniaxial stress for different values of  is shown in 
figure 1. It is verified that the achieved Cauchy stress value 
for given  coincides with achieved Cauchy stress value 
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for . Therefore, the values of  are used in 
following discussion. 

The achieved Cauchy stress curves for different values 
of  have a specific pattern up to particular value of stretch 

 that is stiffer than hyperelastic achieved Cauchy stress 
( ). However, this pattern is not maintained for large 
value of stretch  see figure 2 (top). A better pattern is 
observed when Cauchy stress is normalized by  as 
shown in figure 2 (bottom). Now, the curves are ordered 
such as the stiffer response is achieved when  
(hyperelastic) and the softest response is achieved for 

. The normalized Cauchy stress  
decreases as  increases from 0 to 1. The achieved Cauchy 
stress for  reaches an asymptotic value of one for large 
stretch ; this is the retrieved value by (26). For 
internally balanced achieved results , the normalized 
Cauchy stress  increases with stretching  up to a 
critical maximum value then it decreases. For the special 
case , this maximum value of normalized stress is 
found to be  at  this is 
shown in figure 2 (bottom). 

The achieved finite element results are verified 
analytically by examining two special cases. The first case 
is for  this results in . This means that the 
hyperelastic Cauchy stress expressed in (26) is retrieved by 
internal balance Cauchy stress (31) at , the material 
parameter  becomes simply . The hyperelastic 
Cauchy stress is also retrieved at . Now, the 
normalized uniaxial stress has analytical expression such as 

. The second special case is for . It 
can be shown that  is a solution for 
(41). Then, corresponding normalized uniaxial stress 

becomes . The achieved finite element 
results for both special cases have very good agreement with 
the achieved results by the analytical expressions, see figure 
3. 

Simple shear deformation has the form of 
 where  is the amount of shear that is related to 

angle of shear  by . The Cauchy stress for 
hyperelastic material (26) becomes 

 where 
 and . In general for hyperelastic material, the 

normal stress components do not vanish but the Cauchy 
stress components satisfy the universal relation 

, this is known as Poynting effect [36]. The hyperelastic 
Cauchy stress  is increasing monotonically with 
amount of shear as plotted in figure 4, this theoretically 
means that the cube can sustain infinite shear deformation. 
The internally balance shear stress component shows softer 
response for . The achieved curves of normalized 
shear stress is ordered such as hyperelastic ( ) is the 
most stiff, it becomes softer with increasing , and the result 
of  is the most soft response. The internally balanced 
curves tend to reach an asymptotic value at large 
deformation. This agrees with previous findings in [19, 35]. 

 
Figure 1. Uniaxial homogeneous deformation (top). Uniaxial 
Cauchy stress for different values of  (bottom). Achieved Cauchy 
stress value for given  coincides with achieved Cauchy stress 
value for . 

 

Figure 2. Uniaxial Cauchy stress for different values of  (top) and 
normalized Cauchy stress by  (bottm). The hyperelastic 
case is retrieved by . 
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9. Conclusion 

In this work a finite element treatment is demonstrated for 
a material model based on new theory that applies argument 
of variation to both counterparts of deformation gradient 
multiplicative decomposition [21]. The use of Cayley  
Hamilton equation facilitates significantly the 
implementation of internally balanced material model that 
has the form of . The response of the material 
model is examined in uniaxial loading and simple shear. 
The internally balanced theory retrieves the conventional 
hyperelastic theory in the special limiting case . The 
uniaxial stress for internally balanced material has a stiffer 
response compared with hyperelastic uniaxial stress up to 
significant value of stretching when it reaches maximum 
value then it shows softening behavior. For simple shear, 
the internally balanced shear stress shows softer response 
and reaches an asymptotic value in contrast with unbounded 
increases of hyperelastic shear stress. The presented 
treatment complements previous formulation demonstrated 
in [21] and it allows the use of complicated material models. 
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Figure 3. The verification of finite element results by analytical 
solution for two special cases  and . 

 

Figure 4. Normalized shear stress component  for different 
values of . 
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Appendix

Let  denote a second order symmetric tensor. The principal 
invariants of  are 

 (45) 

and their partial derivatives with respect to  

                          (46) 

Cayley  Hamilton equation can be written as 

                                           (47) 

successive multiplication of (47) by  provides additional 

useful formulas such as 

                                                     (48a) 

                                      (48b) 

Derivative of  and  with respect to  are 

                                                            (49) 

                                  (50)  

where the  operator is defined as 

                           (51) 

The push forward of the internal balance quantities is 

defined as 

                                        (52a) 

                                                        (52b) 

                                                                    (52c) 

                                                   (52d) 

The individual parts of (21) are 

 (53) 

 

                                              (54) 

 (55) 

                                                (56) 

                       (57) 

                                                 (58)
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