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Review article

to reduced costs and environmental impact. Because the 
practise provides record trail, enhanced traceability of farm 
activities can be obtained that consumers and administra-
tion increasingly require (Stafford, 2000; Bellon-Maurel et 
al., 2014). 

PA is a cyclic system. The steps can be divided into data 
collection and localisation, data analysis, management deci-
sions on applications, evaluation of management decisions; 
and then a new cycle starts. Each year, data are stored in a 
database and are used as historical data for future decision-
making (Fountas et al., 2006; Gebbers and Adamchuk, 2010). 
All this large amount of potentially spatio-temporal data 
gathered using PA applications is leading to the ‘big data’ 
concept that will require optimized algorithms to extract the 
hidden knowledge and relations among variables.

Modern PA has a rather short history. Its application 
started over the last twenty-five years, when global position-
ing systems (GPS) and yield monitors were made available 
in field crops. Harvesting was mechanised and sensors were 
placed on harvesting machines to measure the spatial distri-
bution of yield continuously. Applications started in cereals 
using impact or γ-ray grain flow sensors. When first yield 
monitors were developed and yield maps were created, it 
was shown that yield and soil properties varied highly with-
in the field. This fact marked the development of modern PA 
(Hedley, 2015). However, applications in fruit and vegetables 
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 Summary
Farmer and consumer are driving the request 

for sustainable production of fruit and vegetables. 
Precision agriculture, the consideration of spatial 
and temporal variability for increasing the efficiency 
of resources, has been developed over the last twenty- 
five years and was initially applied to field crops. Its 
application to tree crops and vegetables started later 
and has been developing with an increasing number 
of publications as well as research calls in the begin-
ning of the 21st century. First applications were de-
scribed for mechanical harvesting of horticultural 
crops with commercial solutions for harvesting fruit 
that is subjected to processing. A review of methodi-
cal approaches and upcoming challenges for precise 
management of tree crops and vegetables are covered 
in this paper, addressing horticulturists as well as re-
searchers working in precision agriculture. The pre-
cision agriculture domains with specific implications 
in horticultural crops captured are: data collection, 
yield mapping, remote sensing, quality mapping, and 
variable rate application. The spatial and temporal 
variability in orchards as well as effects of site-specif-
ic application of inputs are documented in this paper.  
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Significance of this study
What is already known on this subject? 
•	 Obtaining spatial and temporal data have been 

targeted in the production of fruit and vegetables 
aimed at characterizing its variability and enable 
adaptive measures. 

What are the new findings? 
•	 Approaches of data collection, yield monitor, remote 

sensing, quality mapping, and variable rate application 
are reviewed in the present paper.

What is the expected impact on horticulture?
•	 The concept of precision agriculture has been applied 

in horticultural research for 12 years. At the same time 
information and communication technology has been 
developed rapidly with the new challenges of big data 
and agriculture 4.0. The adaptive, precise management 
in horticultural production is part of it.

Introduction
Precision agriculture (PA) can be defined as manage-

ment of spatial and temporal variability in fields using infor-
mation and communications technologies (ICT) (Blackmore 
et al., 2003). Temporal changes within or between years 
have been addressed in good agricultural practise (GAP) by 
means of laboratory analyses of example spots (Srisopaporn 
et al., 2015), while spatial patterns of plant growth, which 
have also been known for a long time (e.g., Dale, 1999), have 
been quantified in large scale with the assistance of PA. PA is, 
therefore, also referred to as site-specific management. This 
approach considers a management system for farms that 
aims to increase yield or sustainability. PA can assist farm-
ers, because it permits precise and optimized use of inputs 
adapted to the apparent plant status, consequently leading 
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did not start until the 1990’s and were published even later. 
This delay may be attributed, at least in part, to lack of appro-
priate technology (Ehsani and Karim, 2010) to record yield 
or quality data of the crop in an automated way.

PA is frequently referred to as ‘site-specific’, ‘smart’, 
and ‘intelligent’ farming, while we feel comfortable to use 
‘adaptive’ or ‘precise’ farming in horticulture. Precision 
horticulture targets individual trees or zones of tree blocks 
adaptively to its apparent status that shall trim down en-
vironmental footprint of fruit and vegetables production 
through enhanced resource efficiency and improved pro-
duction performance. In horticulture, quality analysis of the 
product is more important than in any other crop. The field 
size is frequently smaller compared to arable production. 
The planting density is lower and even single plants may be 
treated individually adapted to the spatial or temporal pat-
tern. The plant architecture is more complex with planting 
systems of single rows and missing trees in rows may occur.

Horticultural crops are divided into annual and peren-
nial crops. In the latter, the planting system remains stable 
over years, while morphological adaptation of canopy and 
root develops according to the environment. Temporal data 
over more than one season are important, since historical 
plant data potentially provide valuable information on the 
status of endogenous growth factors, e.g., the status of phy-
tohormones and assimilates. Horticultural products are the 
result of many manual operations and hand harvesting. In 
perennial fruit trees, even additional production measures 
are requested, e.g., thinning of flowers and fruits, pruning. In 
orchards, structures for irrigation, hail net or frost protec-
tion are limiting the use of methods for soil mapping, e.g., for 
electromagnetic measurements, which are disturbed by iron 
installations (Gebbers et al., 2009). 

The present paper aims to give an account to application 
of PA in mainly fruit trees, but also a few applications pub-
lished for open-field vegetable crops, capturing specificities, 
methods used, and results obtained. Viticulture is not cap-
tured.

The specificities of the application of PA into horticul-
tural crops in comparison to arable crops are first outlined. 
The data localization and collection follows, which is crucial 
and challenging in horticultural crops when various appli-
cations are addressed (Figure 1). The next section is about 
yield mapping, where the majority of fruit and vegetables are 
handpicked, followed by the applications of remote sensing. 

Methods for quality mapping are addressed, which is of high 
interest in horticultural crops due to consumer demands 
for fresh, appealing produce. The final section is the vari-
able rate application of inputs such as water, fertilizers, and 
agrochemicals, which is the main outcome of applying PA in 
crops, where methods and published results are presented.

For this paper, we consider every approach that uses in 
situ information of plants aiming to manage production of 
fruit and vegetables more precisely as precision horticulture 
– no matter if the in situ plant data were obtained spatially or 
temporarily resolved.

Data collection and localisation
It may depend on the application, if spatial data of the 

soil are useful to characterise zones or individual trees in 
the orchard. Correlation between soil and plant data was 
reported for many fruits, e.g., in apples (Aggelopoulou et al., 
2013; Peeters et al., 2015), while a general answer on neces-
sity of spatial soil data in orchard management has not been 
provided so far and leaves room for future studies. We as-
sume that the irrigation system and temperature gradients 
as well as crop load and endogenous growth factors influ-
ence the apparent plant status to a potentially much high-
er extent. Alternatively, solely in situ plant data might pro-
vide the input for precise management. Plant variables can 
capture plant growth and development considering entire 
canopy or down-scaled to leaf, root, flower, and fruit data. 
Furthermore, physiological processes can be analysed, e.g., 
leaf gas exchange, xylem sap flow, maximum daily shrinkage 
of the stem, water potential, xanthophyll cycle, and chloro-
phyll fluorescence kinetic. Depending on the process a high 
spatial resolution of the object down to centimetre range 
might be reasonable, while in other processes a resolution 
of several decimetre or meter can be appropriate (Figure 1).

The measurement interval needs to be carried out ac-
cording to the methodology and can be seasonal, weekly, 
daily, or even the recording of diurnal courses. The plant var-
iable under question, therefore, determines the frequency of 
data collection. Data collection should be automated, since 
the amount of data cannot be acquired and processed manu-
ally in reasonable time frame for applications (Calfapietra et 
al., 2015; Hodrius et al., 2015). The choice of feasible sensor 
platform ranges from satellite, autonomous platform, un-
manned aerial system to stationary sensor at the tree. 

Analysing the status of canopy as well as yield map-19 

 

 
 
 
FIGURE	1.  Examples of spatial and temporal resolution of sensor data proposed for specific 
measures using the concept of precision horticulture. 
 
  

Figure 1.  Examples of spatial and temporal resolution of sensor data proposed for specific measures using the concept of 
precision horticulture.
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ping need low temporal resolution and can be carried out 
on (potentially autonomous) platforms brought to farm on 
certain occasions (Figure 1; Table 1). In the other extreme, 
we assume that information on fruit is requested several 
times during the season to follow its developmental stages. 
Furthermore, if detailed information on quality of produce 
are requested, sensor signal should be collected as close to 
the fruit as possible to avoid perturbation by the environ-
ment. Such data acquisition would require high manual 
workload. Potentially, automated stationary sensors can be 
implemented that provide time series of fruit data using data 
logger, data transfer by means of radio eventually using wire-
less sensor network or mobile network. Performance needs 
for georeferencing and spatial resolution, here, may be re-
duced compared to georeferencing in remote sensing and 
data collection from a moving vehicle. Table 1 demonstrates 
examples on platforms of sensors. 

Summarizing, in orchards several types of data can 
be collected in situ during the growing season either from 
micro-climate, soil, tree, and fruit, which all have to be geo-
referenced using mainly GPS receivers. For most applications 
such as yield and quality mapping, crop scouting and product 
sampling, differential GPS (DGPS) with accuracy below 1 m 
seems to be sufficient (Scharf, 2015). One of the problems 
encountered in orchards is the limitation for GPS receivers 
to communicate with as many satellites as possible due to 
interference by tree canopy. Antennas above tree canopy are 
used to overcome this problem, which however, is not easy to 
implement when GPS receivers are mounted on tractors and 
hail nets are installed. Alternative solutions for data localisa-
tion have been introduced in orchards. Taylor et al. (2007) 
used unique barcodes for specific bays in kiwifruit planta-
tions located in New Zealand. The barcodes were referenced 
at storage, which also helped to identify spatial quality of 
fruits. Ampatzidis et al. (2009) used radio-frequency iden-
tification (RFID) tags on peach bins, which were referenced 
in field through portable RFID reader for yield mapping. 
Tagging of individual trees is used in many experimental or-
chards meanwhile.

Yield monitor
Spatial information of the yield is pre-requisite for analy-

sis and evaluation in PA as well as in precision horticulture. 
Yield mapping can be carried out easily in mechanised crops 
with sensors added to the harvesting machine. In orchards, 
Rains et al. (2002) introduced a yield monitor for pecan. 
Pecan was harvested by limb shakers, which caused nuts to 
fall on the soil. They were collected in the middle of the rows 
by using blowers for the nuts in the tree rows and sweepers 
to collect them at the row middle. The windrowed nuts were 
picked by a chain loader, and after cleaning by blowing air, 
they were placed on a platform. Load cells measured the load 
of the platform on the go, while GPS added geo-references to 
the measurement. The collected material was weighed every 
second corresponding to 1 m of row. The yield of each tree 
was defined by nuts collected within 4 m radius of each tree. 
The same approach may be feasible in apple orchards for ex-
perimental purposes, when the fruits will only be used for 
processing. However, to our best knowledge, no study was 
published on spatial yield monitoring using a shaker in ap-
ple. 

Applications in mechanically harvested vegetables have 
also been presented: Pelletier and Upadhyaya (1999) devel-
oped a yield monitor for processed tomato using load cells 
under the conveying chains of the machine. Hofstee and 
Molema (2002) presented vision system for potato yield 
mapping. A colour line scan camera above the conveyor belt 
captured 2D pictures of the potatoes. Correlation between 
potato size and weight was established and used for estima-
tion of potato flow in the machine. Yield estimated by the 
sensor compared to yield weighed on the platforms showed 
good precision between 3.5 and 4.6%. Yield mapping sys-
tems for potatoes based on load cells have shown similar 
good results of approximately 5% measuring uncertainty 
(Rawlins et al., 1995). 

However, most horticultural crops are not mechanically 
harvested and therefore many customised approaches for 
specific horticultural crops have been tested for yield map-
ping. In Florida citrus plantations, Schueller et al. (1999) 
used a system to weigh palette bins where oranges were col-
lected. Each worker got picking bags to collect fruits picked 
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Table 1.  Platforms potentially carrying in situ sensors commercially available for measuring crop properties in orchards on 
different scales from area down to fruit.

Platform Sensor References
Satellite Infrared, Radar, multi- and hyperspectral cameras. c.f. Felderhof and Gillieson, 2011; Shahbazi et al., 

2014; Nink et al., 2015

Unmanned aerial system Cameras (colour space, NDVI, IR, stereo), LiDAR, 
thermal imaging, multi- or hyperspectral reading.

Garcia-Ruiz et al., 2013; Gonzalez-Dugo et al., 2013; 
Guillen-Climent et al., 2012; Stagakis et al., 2012; 
Zarco-Tejada et al., 2012, 2014

(Autonomous) tractor Radar, Lidar, cameras (colour space, NDVI, IR, 
stereo), ultra sound, thermal imaging, multi- and 
hyperspectral readings, yield monitor.

Zaman and Salyani, 2004; Wei and Salyani, 2005; Lee 
and Ehsani, 2009; Bendig, 2015; Rosell Polo et al., 
2009; Fukatsu et al., 2014

Crane or slider on frame 
installation

Cameras (colour space, NDVI, IR, stereo), thermal 
imaging, multi- and hyperspectral readings, ultra 
sound, LiDAR.

Park, 2011; Moeller et al., 2007; c.f. Paulus et al., 2014

Stationary logger with cable 
or radio data transfer – 
eventually with wireless 
network

Soil sensors, climate data, balance, acoustic 
system, cameras, water sensors, dendrometer, 
optical fruit sensor.

Guo et al., 2015; Anastassiu et al., 2014; Fernandez-
Pacheco et al., 2014; Fukatsu et al., 2014; Ampatzidis 
et al., 2013; Martinez et al., 2013; Verstraeten et al., 
2008; Togami et al., 2011; Chang et al., 2011 
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manually. After filling, bags were emptied in nearby tubs or 
pallet bins placed between trees (Whitney et al., 1999). Bins 
were removed by hydraulic lift, which used load cells for 
weighing, and GPS to record the position of the bin. It was as-
sumed that each bin represented yield of surrounding trees. 
A reasonable assumption since workers would empty their 
bags into the nearest bin. Yield was estimated by dividing 
weight by area covered by each bin. Position and yield were 
used to prepare yield maps. Spatial variability of yield was 
observed in a 3.6 ha orange orchard. Results were confirmed 
in Mediterranean growing regions in grapefruit (Ünlü et al., 
2014; Peeters et al., 2015).

For apple orchards, Aggelopoulou et al. (2010) mapped 
yield, where apples were handpicked and placed in 20-kg 
plastic bins along rows of spindle-formed trees. Each bin 
was weighed and geo-referenced using DGPS. The bins, cor-
responding to 5 or 10 trees, were grouped to represent their 
yield. The estimation of yield of each tree was not possible 
due to spindle formation, where branches of adjacent trees 
were coinciding. The system facilitated workers, who picked 
fruits continuously, and yield mapping did not interfere 
with their work. The same procedure for yield mapping was 
also performed for pears in a small field of less than 1 ha by 
Vatsanidou et al. (2015).

Fountas et al. (2011) measured yield variation in olive 
tree orchards. Olives in conventional orchards were picked 
by hitting fruit branches with sticks. Olives fell on plastic 
sheets placed underneath each tree. The olives were placed 
in bags and left in groups where they were filled, for loading 
on platform. Each bag was weighed and geo-referenced us-
ing DGPS. Each group of bags was considered to represent 
the yield of surrounding trees and was the basis for yield 
mapping. Spatial variability was observed. Ampatzidis et al. 
(2009) mapped yield of peaches through RFID tags on the 
bins. A weighing machine was combined with RFID reader 
and GPS to record weight and position of each bin. Similarly, 
Taylor et al. (2007) used barcodes on bins to measure yield 
in kiwifruits. The data collected was used to produce yield 
maps of the orchard. 

For palm trees, Mazloumzadeh et al. (2010) created yield 
maps as follows: a few days before harvesting the dates, loca-
tions of trees were surveyed and plotted as x-y co-ordinates, 
fixed at the south-western corner of the grove. Numbers were 
allocated to all trees located in the grove and, during harvest-
ing, yield of each tree was recorded. In plum, hand-picking was 
carried out in bins that were transported to the laboratory for 
single fruit analyses. Spatial pattern of yield and soil ECa was 
found in an orchard of 180 trees capturing 0.37  ha. Results 
pointed to low correlation of elevation, soil ECa and generative 
plant growth (Käthner and Zude-Sasse, 2015). Konopatzki et 
al. (2015) mapped yield in pear orchard of 5 ha size. They per-
formed selective (n=3) harvests of 36 trees and recorded fruit 
mass, length and diameter, and soil properties. Results show-
ing high variability of yield with coefficient of variation =77%, 
and generally low correlations with soil properties. Perry et al. 
(2010) carried out yield mapping of pears by weighing total 
fruit mass picked per tree. They found that yield was strongly 
spatially clustered, suggesting possible management by zones. 
Pozdnyakova et al. (2005) analysed spatial variability of yield 
in a cranberry plantation. They used 0.3  x 0.3  m frames to 
measure the number of fruits before harvesting. Using mean 
berry mass, they estimated the yield. High spatial variability 
was also observed here. 

Considering hand-picked vegetables, Qarallah et al. 
(2008) developed an impact type sensor for yield mapping 
of dry onions. The sensor was used in the laboratory to weigh 
individual bulbs. Akdemir et al. (2005) have measured the 
variability of yield in dry onions grown in Turkey. They divid-
ed the field into 10 x 10 m grid, collected onions from each 
grid by hand and weighed them. They found yield variation 
from 10 to 50 t ha-1. Fountas et al (2015) measured yield of 
watermelons dividing the field into blocks and measuring 
yield of each block weighing the platforms carrying water-
melons of each block. Saldana et al. (2006) have developed 
a yield monitoring system for a platform used as a harvest-
ing aid for broccoli. The platform had a weighing system 
with four load cells which weighed the accumulated product. 
Yield variation from 1 to 8 t ha-1 was observed.

Table 2.  Yield monitor for handpicked horticultural crops.

Crop Method of yield mapping References

Citrus Weighing pallet bins using load cells from neighbouring 
trees on tractor platforms. 
Estimating yield by tree canopy (ultrasonic sensor, Lidar, 
multi-spectral camera).

Colaço et al., 2015; Das et al., 2015; Peeters et al., 
2015; Schuller et al., 1999; Whitney et al., 1999; 
Ünlü et al., 2014

Apples / Pears / Olives Weighing bins of handpicked fruits of neighbouring trees, 
geo-referenced using DGPS.

Aggelopoulou et al., 2011; Fountas et al., 2011; 
Konopatzki et al., 2015; Vatsanidou et al., 2015

Palm / Plum / Pear / 
Cranberry

Numbering each tree before harvest and measuring the 
mass of fruits picked manually. Topographic model or 
local referencing

Mazloumzadeh et al., 2010; Perry et al., 2010; 
Pozdnyakova et al., 2005; Käthner and Zude-Sasse, 
2015

Peaches / Kiwis RFID or barcodes on the bins together with a weighing 
machine, RFID or barcode reader and DGPS. 

Ampatzidis et al., 2009; Meena et al., 2015; 
Taylor et al., 2007

Potatoes Load cells under the conveying chains.  
2-D vision system above the conveying belt.

Hofstee and Molema, 2002; Rawlins et al., 1995

Pecan / Broccoli Load cells and GPS to weigh the volume and position of 
the platforms transferring the crop in the field on the go.

Rains et al., 2002; Saldana et al., 2006

Onions / Watermelons Dividing the field into block and weighing the platforms 
carrying the fruits per block. 

Akdemir et al., 2005; Fountas et al., 2015; 
Sandri et al., 2014
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A yield monitor combining harvester and digital camera 
system was approached in blueberries (Zaman et al., 2008) 
by counting blue pixels in the images. Aggelopoulou et al. 
(2011) estimated apple yield by means of digital photogra-
phy. Zhou et al. (2012) used RGB camera pictures in mid-July, 
after thinning and after the initiation of colour changing to 
red, to estimate yield of Gala apples with reasonable success 
(r2= 0.57).

Mann et al. (2010) created productivity zones using fruit 
yield, ultrasonically measured tree canopy volume, NDVI, 
elevation and apparent electrical conductivity of soil. Citrus 
fruit yield was positively correlated with canopy volume, 
NDVI and ECa, but yield was negatively correlated with el-
evation. Although all the properties were strongly correlated 
with yield and were able to explain the productivity of the 
orchard, citrus tree canopy volume was most strongly cor-
related showing correlation coefficient = 0.85 with yield, ex-
plaining 73% of its variation. Tree canopy volume was used 
to classify the citrus grove productivity into five productivity 
zones termed as ‘very poor’, ‘poor’, ‘medium’, ‘good’ and ‘very 
good’ zones. Aggelopoulou et al. (2013) have used multivari-
ate analysis for management zones delineation. They used 
yield, product quality and soil parameters to delineate man-
agement zones, but results were contradictory. Assumingly, 
analysing the spatial pattern of leaf area and crop load 
(Wünsche et al., 2000) provides a more straightforward ap-
proach compared to spatial soil analysis in precision horti-
culture.

For the studies reviewed, significant spatial variability of 
yield within the field has been documented in horticultural 
crops even in fields with less than 1 ha. Temporal variability 
is an important factor in the development of stable manage-
ment zones. Research in cereals (Blackmore et al., 2003) and 
in cotton (Fountas et al., 2004) showed that areas of transient 
variability are clear after the third year and areas of stable 
high and low yields and unstable yields can be defined. Tree 
crops seem to have more stable yields (Fountas et al., 2011), 
but long-term studies would be needed. Table 2 presents the 
main horticultural crops subjected to yield mapping, while 
yield mapping was carried out manually (handpicked). 

Remote sensing applications
Remote sensing is a group of techniques that can collect 

field data without being in contact to the object (plant or soil) 
using reflectance or emission of light from plant or soil. Light 
reflectance (sun or artificial) has been used in PA to calcu-
late vegetation indices. The most frequently used vegetation 
index is the normalised difference vegetation index (NDVI) 
that is feasible in low-chlorophyll fruits and canopy imaging. 
Several other indices can be calculated and are in use offer-
ing good agreement with leaf chlorophyll measured chemi-
cally (Richardson et al., 2002). NDVI is, therefore, correlated 
to vigour of plants and has strong interaction with yield and 
sometimes quality. The photochemical reflectance index 
(PRI) is a normalized difference index using two narrow re-
flectance bands (531 and 570 nm) that are influenced by the 
xanthophyll cycle pigment content. PRI is used as stress in-
dex providing an effective indicator of, e.g., photo-inhibition 
and water stress in plants (Weng et al., 2006). Remote sens-
ing using hyper- and multispectral approaches was reviewed 
recently by Usha and Singh (2013).

Xujun et al. (2007) developed mathematical models to 
predict yield of citrus trees from their canopy features ob-
tained from airborne hyperspectral imagery recorded in 
three consecutive years operating nine air missions early 

in the growing season every year. The models performed 
well, showing their potential to predict citrus yield several 
months ahead of the harvesting season. Additionally, Liakos 
et al. (2011) found correlations between early season NDVI 
and yield in apples trees for two consecutive years. Suárez 
et al. (2008) used an aerial hyperspectral camera in olive or-
chard and found interaction between leaf-level steady-state 
fluorescence and PRI for the same trees targeting crowns 
for calculation of vegetation index. For mapping of canopy, 
steady-state chlorophyll fluorescence has been used for esti-
mating chlorophyll content and water (Ač et al., 2015), while 
analysing chlorophyll fluorescence kinetic remains challeng-
ing in automated measurements. Hsiao et al. (2010) devel-
oped dynamic fluorescence index using measurements from 
a four-channel fluorescence multi-spectral imaging system 
to estimate water stress conditions of cabbage seedlings.

The measurements of plant reflectance can be carried 
out by satellites (Panda et al., 2010), airplanes, unmanned 
aerial systems (UAS), unmanned or manned ground vehi-
cles (Primicerio et al., 2012). Satellites can provide images 
of large areas, at relatively low cost, but cannot work when 
clouds are absorbing and scattering the photons. Aerial plat-
forms are less susceptible to potential absorbance by clouds, 
but are more expensive. Ground sensors work well, but re-
quire more labour (Table 2). Ground sensors are frequently 
using an artificial light that makes measurements independ-
ent of sunlight and can be carried out even during night. 
Canopy and vigour mapping appears particularly challeng-
ing in orchards that are trained in vertically with trellising 
system. Remote sensing (airborne or satellite images) and 
proximal sensing (images taken within 1  m from canopy) 
have been extensively used to monitor vigour and canopy in 
high value crops. In recent years, the use of UAS has also seen 
high increase (Zhang and Kovacs, 2012), where applications 
in high value crops start to appear already driven by compa-
nies providing semi-commercial solutions.

For estimation of water status, Berni et al. (2009) applied 
high resolution thermal imagery using UAS for two years to 
map tree canopy conductance and crop water stress index 
(CWSI) in olive trees. Additionally, Cohen et al. (2012) used 
aerial thermal imagery to estimate CWSI in palm trees for 
two consecutive years in three drip-irrigated plots. They suc-
cessfully managed to produce a protocol for mapping water 
status variability that could be used for irrigation schedul-
ing. In vegetables, Clarke (1997) used airborne thermal im-
agery to detect insufficient irrigation rate, water leaks and 
malfunctions in subsurface drip-irrigation in muskmelons. 
These are only three random examples of the application and 
further developments following Jones (1992). The analysis 
of plant water status by means of thermal imaging has been 
reviewed recently (Maes and Steppe, 2012). 

Further sensors feasible for remote sensing are light de-
tection and ranging (LiDAR), ultra sound, and texture based 
image analysis. In citrus orchards in Florida, volume of tree 
canopy was measured by ultrasonic or laser scanner (Zaman 
and Salyani, 2004; Zaman et al., 2006). These may be marked 
as the first publication on precision horticulture and com-
mercial applications have been developed targeting on/off 
zone spraying meanwhile (Walklate et al., 2002; Mendez et 
al., 2014). Consequently, remote sensing can be applied for 
analysing variation of canopy considering spectrophotomet-
ric properties and morphology, however, we need proximal 
measurements to acquire information on the quality of the 
product. 
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Quality mapping

Experiments on mapping fruit quality
In horticultural crops, data about spatial variability of 

product quality should be collected, apart from or along with 
yield data. Even with the challenges of implementation (Table 
1), in situ analyses of fruits have been targeted by many work 
groups. In high value crops, quality is seen as the crucial fac-
tor for marketing. In the past, the Organisation for Economic 
Co-operation and Development (OECD) set standards con-
sidering size, colour, and sometimes shape of the produce. 
These properties were measurable in sorting lines commer-
cially available since 1992 based on the new vision systems. 
However, due to unfavourable experiences, mainly with un-
ripe fruit or fruit showing physiological diseases, consumer 
demands have been increasingly considering internal qual-
ity of produce. Regional programmes were established tar-
geting fruit quality and the OECD responded by developing 
guideline aiming at promoting uniform quality control pro-
cedures: “Guidance on Objective Tests for Determining the 
Ripeness of Fruit” (OECD, 1998). Here, the internal proper-
ties of produce are recognized, e.g., sweetness, acidity, fruit 
flesh firmness, internal browning, glassiness. Coincidently, a 
new research community working on measuring principles 
for non-destructive fruit sensing has been established, sup-
ported by research funding programmes worldwide.

Early experiments on spatial variability of fruit quality 
were carried out by means of rating in the field or labora-
tory analyses. It was expected that plant growth as well as 
soil parameters may be correlated to fruit quality. However, 
most papers deal with yield mapping, nutritional and water 
issues (Agam et al., 2014; Lopez-Granados, 2004; Zaman and 
Schumann, 2006; Zaman et al., 2006) pointing to huge spatial 
variability. However studies for quality mapping and the cor-
relation with soil and plant parameters at field scale are still 
limited. The influence of spatial variability of chemical soil 
properties on spatial pattern of fruit diameter was analysed 
in pear grown in continental, temperate climate (Konopatzki 
et al., 2009). In apple production, it was pointed out that 
fruit development and soil apparent electrical conductivity 
(ECa) were well correlated (Türker et al., 2011). Taylor et 
al. (2007) studied the spatial variability of kiwi fruit quality 
in eleven orchards in New Zealand and considered implica-
tions for sampling and mapping based on fruit quality. They 
pointed out that fruit weight had more advantages to manage 
harvesting spatially than dry matter.

Aggelopoulou et al. (2010) analysed spatial variability of 
quality in apples. They measured several parameters of qual-
ity including fruit mass, skin colour, soluble solids content, 
malic acid content, juice pH, and fruit flesh firmness. They 
found that areas of high yields had lower quality, which can 
be explained by high crop load and inadequate leaf area per 
fruit. The variability of quality was high and spatial pattern 
varied because of temporal variability over three years of the 
experiment. In European plum correlation of spatial pattern 
of soil ECa and generative growth, capturing also fruit size, 
was found in temperate climate (Käthner and Zude-Sasse, 
2015). The between-year variability was low for soil pattern, 
but high for fruit quality. Consequently, for mapping fruit 
quality, we can assume that measurements are requested 
at least every season. For analysing the fruit developmental 
stages even several measurements per season or continuous 
monitoring would be beneficial. Crucial is certainly the avail-
ability of feasible sensors for automated in situ monitoring.

Quality analysis in situ
For non-destructive analyses of internal quality, sen-

sors are under development or have been commercialized 
during the past 15 years. It can be expected that still more 
sensors will become available in the near future. In the field, 
mechanical impacts on fruit can be measured transferring 
data by radio or Bluetooth communication protocols (Herold 
et al., 2001; Praeger et al., 2013). Note that we consider this 
approach still as precision horticulture as long as readings 
were carried out in situ to manage the orchard more precise-
ly – even if the spatial resolution is extremely low and only 
example trees are analysed.

Fruit and stem diameter can be measured with den-
drometer, linear displacement position sensor, and shadow 
imaging. Instruments are available equipped with wireless 
sensor network. Methodology was reviewed by Fernandez 
and Cuevas (2010) and systems are applied in commercial 
orchards already. Optical properties of fruit and vegetables 
that may be considered in their non-destructive analyses are 
wavelength-dependent: absorption coefficient, scattering 
coefficient, anisotropy factor, refractive index, fluorescence, 
chlorophyll fluorescence kinetic and fluorescence life-time. 
Methods are commercially available as hyper- or multispec-
tral systems as well as imaging techniques (Table 3). 

Applying spectroscopy in the near infrared (NIR) or vis-
ible ranges provides information on absorption of water, 
carbohydrates expressed as soluble solids content (SSC) 
or pigments, respectively (Olsen et al., 1969). Several port-
able sensors are available to measure dry matter and SSC 
by means of NIR spectroscopy (Bellon-Maurel et al., 2010; 
Cen and He, 2007; Nicolai et al., 2007) and pigments of ap-
ple in the visible range (Merzlyak et al., 2003; Zude, 2003; 
Seifert et al., 2015). Earlier literature approached the deter-
mination of optimum harvest date by means of laboratory 
analyses or the analysis of quality in postharvest using the 
SSC or pigment contents of fruit. In mango, dry matter and 
eating quality was used for monitoring fruit developmental 
stages (Subedi et al., 2007). In the context of precision hor-
ticulture, Zude et al. (2008) used localized readings using 
a hand-held NIR system for spatial harvest management in 
mandarins recognizing SSC of fruit. When the steady state of 
SSC was reached, trees were marked as ready-to-harvest in 
the map of the orchard. Time-resolved as multi-spectral sys-
tem and spatially resolved backscattering imaging as hyper- 
or multispectral approach can be applied to obtain informa-
tion on absorption and scattering coefficients (Cubeddu et 
al., 2001; Taroni et al., 2003; Lu, 2004; Baranyai and Zude, 
2009). These two methods have been evaluated by various 
workgroups pointing out high potential of the approach for 
distinguishing fruits grown in zones of drought stress and 
well-irrigated zones (Qing et al., 2008). 

Recording the fluorescence or life-time of fluorescence 
signal by means of laser-induced fluorescence spectroscopy 
was introduced for monitoring marker molecules or nutri-
tional important compounds with desktop modules (Wulf 
et al., 2008). The life-time analysis has been studied rarely, 
but may address the consumer request for health-promoting 
products. In viticulture, mapping of the fluorescence signal 
of fruit has been applied in several studies, which are not 
included in this paper. Fluorescence-based optical sensors 
have been successfully implemented apart from grapes qual-
ity, also in apples to non-invasively analyse the content of 
chlorophylls, anthocyanins and flavonols in ‘Fuji’, ‘Granny 
Smith’ and ‘Golden Delicious’ apple cultivars (Betemps et al., 
2012). The chlorophyll fluorescence can be recorded in situ 
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providing information on fruit blush colour and fruit matu-
rity (Kuckenberg et al., 2008). The most prominent system 
used in practise is for sure the Harvest WatchTM applied in 
apple monitoring postharvest in storage rooms (De Ell et al., 
1998). The analysis of chlorophyll fluorescence kinetic is fea-
sible in precision horticulture, since in situ measurements 
are enabled with pulse-amplitude-modulated (PAM) method 
for kinetic analysis in various light conditions. The efficiency 
of photosystem II and light saturation can be analysed by the 
PAM chlorophyll fluorescence kinetic, again with the option 
to measure images of fruit (Nedbal et al., 2000). Many stud-
ies are available in stress physiology that point to applica-
tions in precision horticulture by mapping spatial variability 
of fruit properties. Furthermore, Ruiz-Altisent et al. (2010) 
reviewed advanced sensing technologies that have been used 
for quality analyses in fresh fruit and vegetables in the labo-
ratory: X-ray fluorescence and MIR for measuring inorganic 
nutrients, terahertz spectroscopy for detecting monosac-
charides and water (Kameoka and Hashimoto, 2009), X-ray 
or optical coherence tomography that can provide data on 
cavities and internal structure of the product (Fischer et al., 
2008; Mathanker et al., 2013; Matsushima et al., 2013), nu-
clear magnetic resonance (NMR) imaging for analysing wa-
ter distribution (Windt and Blumler, 2015). The methods ap-
pear still advanced considering the measurement in the field. 
Handheld systems of Raman spectroscopy for analysing the 
distribution of nutritional valuable compounds are under de-
velopment (Maiwald et al., 2015).

Qiao et al. (2005) developed a mobile grading robot for 
peppers capturing yield and quality data. It was moved to a 
plant and a worker picked the peppers and placed them on 
the machine for grading. The machine was equipped with a 
GPS receiver on it to locate the plant, weighed and analysed 
the fruits of each plant. Consequently, robots providing spa-
tially resolved data as well as stationary sensors enabling the 
recording of time series can further support the gain of infor-
mation from the farm.

Variable Rate applications
Variable Rate (VR) application is the major target for PA. 

All information gathered should result in adapted manage-
ment of the defined zones. 

In citrus orchards in Florida, tree canopy measured by 
ultrasonic or laser scanner was correlated to yield. This 
property was used to vary fertiliser application (Zaman et 
al., 2005, 2006). In sprayers, sensors can detect missing trees 
and then stop nozzle output. Additionally this set up auto-
mates stopping of sprayer output at headlands and facilitates 
operator’s work. Other sensors sense the trees’ density and 
height using laser scanners, ultrasonic or photoelectric sen-
sors (Giles et al., 1988) and adjust spraying direction of noz-
zles to reduce out-of-target spraying. 

In olive trees, Lopez-Granados et al. (2004) created site-
specific fertilization maps based on leaf nutrient spatial 
variability. They found that consistent saving in N, K and P 
fertilisers could be achieved if a differential fertilization pro-
gramme was based on spatial variability of leaf nutrient sta-
tus of the trees. Fountas et al. (2011) also applied manually 
to each olive tree P, K and pH based on prescription maps 
from soil analysis. 

In apples, Aggelopoulou et al. (2010) have used soil analy-
sis data and nutrient removal from the soil by the crop to pre-
pare prescription maps for fertilizer application. Farooque et 
al. (2012) delineated zones for nitrogen fertilization in blue-
berry by means of soil and fruit yield clustering. Prescription 
maps may be based on characteristics measured during the 
growing season. Aggelopoulou et al. (2011) found high cor-
relation between flowers and yield distribution in apple or-
chards. This information can be used to manage the inputs 
to the crop as requirements of trees with high crop load are 
different from trees with low crop load. 

VR irrigation is also of importance due to shortage of wa-
ter reserves and necessity of irrigated crops for food security. 
Irrigation systems for perennial crops have to be designed 
from the beginning to achieve VR irrigation. Knowing the soil 
variability, it is possible to develop more than one network 
applying different water volume or frequency. Goodwin et 
al. (2008) have applied VR irrigation in a nectarine orchard. 
They assumed that water requirements of each tree depend-
ed on its canopy, which could be measured by remote sensing. 
They divided the orchard into rows and applied water based 
on the larger trees of each row, achieving economy in the 
range of 1,700 m3 ha-1. In the NASA Terrestrial Observation & 
Prediction System (TOPS) project, satellite images were used 

Table 3.  Spectral photometric methods available as portable systems for in situ analysis of fruit. Reviews or recent publica-
tions in case no review was found are listed.

Measuring principle Feature Reviews or, if not available, recent references
Frequency domain

Hyper- and multispectral 
spectroscopy in the visible range

Anthocyanins, carotenoids, chlorophylls Merzlyak et al., 2003; c.f. Zude, 2003; Kozukue and 
Friedman, 2003; Ziosi et al., 2008; Seifert et al., 2015 

Near infrared spectroscopy Dry matter, soluble solids content Nicolai et al., 2007; Cen and He, 2007; Bellon-Maurel et 
al., 2010; Abu-Khalaf and Bennedsen, 2004 

Hyper- and multispectral imaging Same as visible or NIR Pu et al., 2015; Lorente et al., 2012
Photogrammetry Size, shape, colour, biospeckle Vijayarekha, 2012; Blasco et al., 2012; 

Moreda et al., 2012; Zdunek et al., 2014
Fluorescence Chlorophyll, phenols Lichtenthaler et al., 2012; Nedbal et al., 2000; De Ell et al., 

1998; Kuckenberg et al., 2008; Wulf et al., 2008
Time domain

Distribution of time of flight Anthocyanins, carotenoids, chlorophylls, 
effective path length

Cubeddu et al., 2001; Taroni et al., 2003; Zude et al., 2011; 
Kurata et al., 2013; Gobrecht et al., 2015

Space domain
Spatially-resolved hyper- and 
multispectral Imaging

Wavelength-dependent, same as NIR or 
Vis, scattering properties

Lu, 2004; Peng and Lu, 2006; Baranyai and Zude, 2009; 
Nguyen et al., 2014
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to assess vine vigour, estimate crop coefficient (Kc) and regu-
late irrigation (Johnson et al., 2006). 

It should be pointed out that in some applications, man-
agement decisions to delineate management zones and 
consequently apply VR applications should be made tree-
individual, e.g., in thinning, while in other applications the 
zone-specific treatment might be reasonable, e.g., in irriga-
tion (Figure 1).

Conclusions
Horticultural crops pose an emerging and challenging 

sector for precision agriculture technology and manage-
ment. From most research reported, spatial variability of 
yield was confirmed even in small fields, where the majority 
of horticultural crops are grown in contrary to arable crops. 
Variability of growth factors affecting yield are the rationale 
of PA, which is by definition the management of variability. 
Nevertheless, no mainstream technologies or strategies for 
measuring yield in orchards and vegetable production are 
yet in place, while this review may inspire new research for 
other horticultural crops using more automated methods for 
yield mapping that are needed.

Quality management is one major component in horticul-
tural crops. Methods to estimate fruit status in the production 
are required. Advanced techniques have been introduced in 
experimental practice for measurements on the fruit level in 
situ. Operations supported by means of in situ information 
on the plant status will be: on/off zone spraying, thinning, 
irrigation, frost protection, pruning, and harvest. No applica-
tions in viticulture were reviewed, but the huge potential has 
been pointed out earlier. As most fruits are perennial crops, 
temporal stability is important for establishing permanent 
blocks or sub-blocks within the fields. However, the temporal 
stability of quality pattern still needs more studies. Finally, as 
many horticultural crops are in small fields in the major part 
of the world, site-specific technologies and strategies should 
be developed for small fields, which should be economically 
viable and easy for small farmers to adopt. This, and the huge 
amount of data obtained, will be major challenges for the ap-
plication of precision agriculture in horticultural crops.
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