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Abstract. In this work, we aim to obtain an exact solution for a nonlinear oscillator with co-
ordinate position- dependent mass. The equation of motion of the nonlinear oscillator under
investigation becomes exact after making reduction of order. The obtained solution was expressed
in terms of position and time. Initial conditions were applied, in addition to modified initial condi-
tion. Finally, fixed points where studied with their stability, and some plots describing the system
where presented.
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1. Introduction

Simple oscillating systems are modeled in general as a mass attached to a spring (i.e.,
simple oscillators). The equation of motion describing such systems are obtained either
using Newtonian mechanics or Lagrangian method, and it can be solved exactly in some
simple cases. Unfortunately, no such systems present in the macroscopic world and this
is due to dissipative forces that are always present in nature. Dissipative forces can be
ignored if they have small effects, but in many cases they lead to damping oscillators.
Linear oscillators are those that oscillate with one frequency and its motion is sinusoidal
and periodic, for more information related to oscillators (simple and damped) we advise
interested people to refer to some classical mechanics texts [5, 9, 10].

Nonlinear oscillators result in complex motion and there are mainly two important fea-
tures for such systems: as the amplitude increases then the non linearity motion becomes
more important, and in some cases, the frequency will change with amplitude. In real
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world one can find many such nonlinear oscillators and one has to note that coupled non-
linear oscillators are a subject founded in many branches of science as: biology, physics,
and many others. In literature there are a lot of efforts paid on studying these systems
[13, 16, 20]. An important example is the van der Pol oscillator which is an oscillator with
nonlinear damping introduced in the 1920’s by Balthasar van der Pol (1889 - 1959).The
van der Pol oscillator is considered as an example of an oscillator with nonlinear damp-
ing, energy being dissipated at large amplitudes and generated as low amplitude, and
it attracts the attention of many researchers where many method have been applied in
dealing with this oscillator either analytically using Homotopy analysis method (HAM)
as in[4, 14]. Homotopy perturbation method (HPM) as in [18] or numerically using for
example perturbation algorithm combining the method of Multiple Scales and Modified
Lindstedt–Poincare Techniques as in [15], A domain decomposition method (ADM) as
in [2, 8] and many other methods. Nonlinear oscillations have been of paramount im-
portance in practical engineering, physics, applied mathematics, and several real-world
requirements for many years. In literature, one can find many various analytical ap-
proaches for solving nonlinear systems, such as the iteration perturbation method [7], the
homotopy perturbation method (HMP) [21], the variational method [17], and many other
methods[6]. Interested researchers in this topic can refer to [12, 12] therein. In principle,
the solution for such nonlinear oscillators is difficult to obtain analytically and researchers
resort to use different numerical methods [1, 3, 21, 21]. In [21] the authors consider a
nonlinear oscillator with coordinate-dependent mass, where they proposed a nonlinear os-
cillator with negative coefficient of linear term (see Eq. 3 in [21]) and apply the homotopy
perturbation method to find an approximate period for their equation. In this paper we
are going to find an exact solution for the above equation in section 2, while in section
3 the exact solution with modifying in the potential function will be presented and ex-
plained, an equilibrium points of the system and their stability with graphical simulation
are given finally close the paper with a conclusion .

2. Exact solution for nonlinear oscillators with coordinate-dependent
mass

Consider the following equation

(1 + αx2)ẍ+ αxẋ2 − x(1− x2) = 0 (1)

An important property of (1) is the frequency- amplitude relationship, where in principle
frequency of a nonlinear oscillating system as (1) is nonlinearly related to its amplitude.
This property was the aim of study of many researchers such as [12], where he suggests a
direct frequency estimate method for nonlinear oscillators with arbitrary initial conditions
and the method used is based on the work presented in [11], [19] shows that it can be
greatly interesting for nonlinear oscillations.Firstly, we make reduction of order for the

differential equation (1). Let v = dx
dt then d2x

dt2
= dv

dt = dv
dx .

dx
dt = v dv

dx ,so we transform
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equation(1) into the following first order nonlinear differential equation

(1 + αx2)v
dv

dx
+ αxv2 − x(1− x2) = 0

which can be rewriiten as:

(1 + αx2)vdv +
(
αxv2 − x(1− x2)

)
dx = 0 (2)

Now, we will discuss the exactness solution of equation(2) (i.e., show if it is conservative
or not). Letting M(x, v) = (1 + αx2)v, N(x, v) = αxv2 − x(1− x2), then

∂M

∂x
= 2αxv

and
∂N

∂v
= 2αxv

This means that equation (2) is exact (conservative). According to differential equations
anslysis there must exists a potential function ψ(x, v) such that.

ψ(x, v) = (1 + αx2)vdv

=
1

2
(1 + αx2)v2 + f(x)

where f(x) is a constant function respect to v. In the following we aim to find f(x)

∂ψ(x, v)

∂x
= N(x, v)

Thus
αxv2 +

df

dx
= αxv2 − x(1− x2).

This means that:

f(x) = −x(1− x2)dx

=
−x2

2
+
x4

4
+ c

Therefore the potential function ψ(x, v) becomes

ψ(x, v) =
1

2
(1 + αx2)v2 − x2

2
+
x4

4
+ c

Set
1

2
(1 + αx2)v2 − x2

2
+
x4

4
= c

Now substituting the initial conditions x(0) = A, and ẋ(0) = 0 = v, the potential function
is

ψ(x, v) =
1

2
(1 + αx2)v2 − x2

2
+
x4

4
+
A2

2
− A4

4
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Setting c = 0 ( arbitrary constant) in ψ(x, v). Then we have

v2 =
x2 − x4

2

(1 + αx2)

dx

dt
= v =

√
2x2 − x4

2(1 + αx2)

dt

dx
=

√
2(1 + αx2)

2x2 − x4

Integrating the above equation to get

t =
√
2
1

x

√
(1 + αx2)

2− x2
dx

t =
√
2
1

x

√
(1 + αx2)

2− x2
dx

t =
√
2
1

x

√
(1 + αx2 + α− α)

1 + 1− x2
dx

t =
√
2
1

x

√
1 + α− α(1− x2)

1 + (1− x2)
dx

Now y = 1− x2, dy = −2xdx, and dx = −dy√
1−y

t = − 1√
2

1

1− y

√
1 + α(1− y)

1 + y
dy

We can write the integration as

t = − 1√
2

1

1− y

√
1 + 2α

1 + y
− αdy

Again, let w = 1+2α
1+y −α,then y = 1+2α

w+α −1, and dy = −(1+2α)
(w+α)2

dw, the equation integral
reads

t =
1√
2

1
2w−1
w+α

√
w
(1 + 2α)

(w + α)2
dw

t =
(1 + 2α)√

2

√
w

(2w − 1)(w + α)
dw

Substituting u =
√
w, du = 1

2udw, then

t =
(1 + 2α)√

2

2u2

(2u2 − 1)(u2 + α)
du
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= (1 + 2α)
√
2

u2

(2u2 − 1)(u2 + α)
du

Making use of partial fraction

t =
1

2
ln

(√
2u− 1√
2u+ 1

)
+

√
2

α
tan−1(

u√
α
) + c

But u =
√
w =

√
1+2α
1+y − α =

√
1+αx2

2−x2 , which imply to the solution

t =
1

2
ln


√

2(1+αx2)
2−x2 − 1√

2(1+αx2)
2−x2 + 1

+

√
2

α
tan−1

(√
2 (1 + αx2)

α (2− x2)

)
+ c (3)

using x(0) = A, we get

c =
1

2
ln


√

2(1+αA2)
2−A2 + 1√

2(1+αA2)
2−A2 − 1

−
√

2

α
tan−1

(√
2 (1 + αA2)

α (2−A2)

)

The solution of equation (3) has a discrete two motional oscillation when 2 − x2 > 0
,|x| <

√
2 Otherwise we have the two motional oscillation intersect, provided that α is

positive in the term
√

2
α .

3. The exact solution with modifying in the potential function

In section 2, the following scalar function was obtained

ψ(x, v) =
1

2
(1 + αx2)v2 − x2

2
+
x4

4
+
A2

2
− A4

4
(4)

If we replace the constant position term from the potintial function ψ(x, v) to be propotinal
by A2

2 − A4

4 = βx2,where β ≥ 0,then equation (4) becomes

ψ(x, v) =
1

2
(1 + αx2)v2 − x2

2
+
x4

4
+ βx2

So
1

2
(1 + αx2)v2 − x2

2
+
x4

4
+ βx2 = 0

t =
√
2
1

x

√
(1 + αx2)

2(1− 2β)− x2
dx
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Let x2 = u, and 2(1− 2β) = λ, then

t =
1√
2

1

u

√
1 + αu

λ− u
du (5)

Integrating the equation (5) as previouse calculation we get

t =
1√
2λ

ln

(√
λu− 1√
λu+ 1

)
+

1√
2λα

tan−1(
u√
α
) + c

t =
1√

4(1− 2β)
ln


√

2(1−2β)(1+αx2)
2(1−2β)−x2 − 1√

2(1−2β)(1+αx2)
2(1−2β)−x2 + 1

+
1√

4α(1− 2β)
tan−1(

√
2(1− 2β) (1 + αx2)

2(1− 2β)− x2
) + c

Applying the boundary condition x(0) = A,we obtain c= 1√
4(1−2β)

ln


√

2(1−2β)
(
1+αA2

)
2(1−2β)−A2 +1√

2(1−2β)
(
1+αA2

)
2(1−2β)−A2 −1

−

1√
4α(1−2β)

tan−1(
√

2(1−2β)(1+αA2)
2(1−2β)−A2 )

It is important to notice that |x| <
√
4(1− 2β) <

√
2, 0 ≤ β < 1

2 ,and α > 0 due to the
present the following term √

2(1− 2β) (1 + αx2)

2(1− 2β)− x2
> 1

Here we have a solution for this equation to make a two discrete oscillate motion (see
Figs. 13- 14, when |x| <

√
2(1− 2β) <

√
2, 0 ≤ β < 1

2 otherwise we have overlapping by
two oscillate motion (see Figs. 2- 4).

4. An equilibrium points and their stability with graphical simulation

In this section, we are going to find the equilibrium points and analyse their stability.
For this issue convert equation(1) to a system of nonlinear equation by y1 = x, y2 = ẋ,then
we get the following two nonlinear system of equation.

ẏ1 = y2 (6)
ẏ2 = −(αy1y

2
2 − y1(1− y21)/(1 + αy21)

Now Let [
y2

−(αy1y
2
2 − y1(1− y21)/(1 + αy21)

=

[
0
0

]]
(7)
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Solving equations(7) one gets three equilibrium points (y∗1, y
∗
2) = (0, 0) ,(1, 0), (−1, 0). To

determine their stability of the equilibrium points we find the Jacobian matrix for the
system(6)

J =

[
0 1

−
[
(1 + αy21)(αy

2
2 + 3y21 − 1)− (αy1y

2
2 − y1(1− y21))2αy1

]
/(1 + αy21)

2 −2αy1y2/(1 + αy21)

]
At the point (0, 0)the Jacobian

J =

[
0 1
1 0

]
Since the charactrestic equation is λ2− 1 = 0 so the eigenvalues are λ1,2 = ±1 so the fixed
point is unstable as shown in the graphical analysis (see Figs. 2- 3).

For the other two equilibrium points (±1, 0), the Jacobian takes the following form:

J =

[
0 1
−2
1+α 0

]
.

So λ1,2 = ±
√

2
1+α i This means that the points (±1, 0) are center points when α ∈

(−∞,−1) goes to limit cycle and unstable when α ∈ (−1,∞) since one of the eigen-
values is positive and the other is negative. Since the fixed points does not depend on
the value of α so we can take it any real value so we can make simulation for the solution
graphically. Below, we plot the oscillator equation of motion with the following cases.

Case I. For fixed point (0, 0), where α any real

Figure 1: (0, 0) α ∈ R.

We see that the fixed point still (0, 0)despite the changes in α (see Fig. 1) so the fixed
point does not depend in α, while if we move a little bet from this fixed point oscillation
intersect as in (Figs. 2-3) this is show how the fixed point (0, 0) unstable.

CaseII. We see that after this little change of initial value away from the fixed point
the equation will depend in the changes of α.
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Figure 2: (0.001, 0) α = 0.5.

Figure 3: (0.001, 0) α = 1.5.

CaseIII.For changing 0.5 < α < 4.72 we have the change of oscillation while α in-
crease as shown in Fig.4.

Figure 4: (0.001, 0) α = 4.57.
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CaseIV Now for changing α to be non positive real number we see that the nonlinear
oscillator intersect to each other when, −0.5 < α ≤ 0 like Figs. 5- 7, while when α ≤ −0.5
we see that the solution goes to infinity’s shown in Fig. 8.

Figure 5: (0.001, 0) α = 0.

Figure 6: (0.001, 0) α = −0.29.

Figure 7: (0.001, 0) α = −0.4.
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Figure 8: (0.001, 0) α = −0.5.

CaseV. We see that around the fixed point (0, 0) ,we have an intersection between two
oscillate system and they began to disjoint if we increase the vaues to be near the fixed
point (1, 0) or (−1, 0) see Figs. 9- 10

Figure 9: (0.5, 0) α = −0.5.

Figure 10: (−0.5, 0) α = −0.5.
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CaseVI. We see if we increase the value to reach the fixed point (±1, 0) which they
are unstable for any real number α see Fig. 11

Figure 11: Fixed points (0, 0) and (1, 0) where α ∈ R.

Case VII. Now if we change the initial value we see the oscillate movement has to
periodic in two different time see Fig. 12

Figure 12: Initial value (1.37, 0) α = 0.
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Finally we see an socialite movement for this equation with periodic motion just when
we begin a little bet a way from the fixed point when α ≥ 2 there is two disjoint oscillate
like Figs 13- 14, but when −0.53 ≤ α < 2 the oscillate movement will intersect see Fig.15,
while the solution goes to infinty when α > −0.53 as shown in Fig.16.

Figure 13: Initial value (1.37, 0) α = 0.

Figure 14: Initial value (1.37, 0) α = 5.

Figure 15: Initial value (1.37, 0) α = −0.53.
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Figure 16: Initial value (1.37, 0) α = −0.54.

Studying the direction field around the fixed points of the system, we see first how
the solution goes a way from (0,0), then the fixed points (±1, 0). Since every fixed point
change it direction when it go away from left or right side as an opposite position from
each other,now the graph of the direction field contain the three fixed points that shows
their stability see Fig. 17.

Figure 17: Direction field about the points (0, 0), (1, 0), (−1, 0).

5. Conclusion

An exact analytical solution for a nonlinear oscillator with coordinate dependent- mass
was obtained. From the obtained figures we conclude that the oscillator have a periodic
oscillation at all time and in all position except at the equilibrium points, that change the
direction and make intersection of oscillator or disconnect each other in different time and
position.
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