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Forecasting the Behavior of the Global Market Price Using
Markov Chain of the Fuzzy States:

Case Study Gold Price

By
Deema Ismail Abdulfattah Abdoh
Supervisor

Prof. Dr. Saed Mallak

Abstract

The estimation regarding to the return rate of global market prices has been
one of the most popular topics for the financial area due to its high return.

In this work we consider gold prices as case study.

Closing retraction R, is studied as a fuzzy concept and several types of
fuzzy numbers are applied to R,: triangle, trapezoidal, parabolic, and K-
Trapezoidal-Triangular fuzzy numbers. We create a Markov chain model
(MC) and a Markov model with fuzzy states (MCFS) and compare between
them. The two models MC and MCFS are used to predict for long run time.
At the end, we estimate the expected return price in specific months.

Whereas, the MCFS model has more accurate results than the MC model.

In this work Excel is used to process the data and the MATLAB is used for

other calculations.
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Chapter 1
Introduction

1.1 Motivation

Due to uncertainty either in the parameters, which define the problem, or in
the situations in which the problem occurs, the classical approaches for
uncertainty analysis are very important as they help for making effective

decision-making.

It is very intractable to make statistical involvement while the available data
Is inadequate. Probability Theory has been applied successfully for many
real world problems but still there are some restrictions to the probabilistic
method. For example, probabilistic methods are based on enormous
collection of data, which is random in nature, to achieve the necessary level
of confidence. But in wide-ranging, it is difficult to get the exact probability
of the events on account of the complicated systems. Thus, results based on
probability theory do not always provide helpful information to the
practitioners due to the restriction of being able to handle only quantitative
information. Moreover, in real world applications, sometimes there is a lack

of data to precisely deal with the statistics of parameters [2].



To conquer these complications, methodologies based on fuzzy set theory
are being used in the risk analysis for spreading the basic event uncertainty

[2-3].

The probabilistic approaches deal with uncertainty, which is random in
nature, while the fuzzy approach deals with the uncertainty, which is due to
inaccuracy associated with the complexity of the system in addition to
haziness of human judgement difficulties. Fuzzy set theory has been
considered as a useful tool, especially for dealing with the complicated
systems, in which the interactions of the systems’ variables may be too

sophisticated to be accurately identified [2-3].

One of these complex and difficult systems is the economic system and the
global market price, where the quick change of market price in the global
market has attracted several investors into examining price fluctuations. The
estimation concerning to the exact daily, monthly or yearly price of the
market price has always been a difficult task in the business sector. Markov

process is a stochastic model that can be used to model a random system [8].

Markov decision processes (MDPs) are mathematical models that give
mathematical outline for modelling the situations where outcomes are
partially random and partially under the supervision of a decision maker. The
Markov property means that evolution of the Markov process in the future

depends only on the present state and does not depend on past history. The



Markov process does not remember the past if the present state is given.
Hence, the Markov process is called the process with memory less property

This model relies on crisp states [10] and [19].

The idea of fuzzy logic was first advanced by Zadeh (1965) where he defined

fuzzy sets in order to describe unclear situations mathematically [30].

Fuzzy matrices were introduced for the first time by Thomason (1977), who

discussed the convergence of powers of fuzzy matrix [25].

Kruce et al. (1987) introduced the fuzzy Markov chain as a classical Markov
chain based on fuzzy probabilities where he used a fuzzy set to denote the

transition matrix with the uncertain data in the Markov chains [14].

Fuzzy Markov chain is demonstrated as the concept of fuzzy relation and its
compositions (Sanchez, 1976) [21]. It can be used while the decision maker
prefers subjective probabilities to model the uncertainties (Vajargah and

Gharehdaghi, 2012) [27].

Yoshida (1994) constructed a Markov fuzzy process, with a transition
possibility measure [29]. Slowinski (1998) showed that we can use a fuzzy
set representation in order to deal with uncertain data and flexible

requirements [23].

Fuzzy Markov chains approaches are given by Avrachenkov and Sanchez

(2000), they analyzed fuzzy Markov chains and its properties in detail [28].



Kuranoa et al. (2006) used fuzzy states to show fuzzy transition probabilities
[15]. Pardo and Fuente (2010) used Markovian decision processes with fuzzy
states to calculate the best policy to be implemented regarding publicity
decisions in a queueing system [20]. Zhou et al. (2013) used fuzzy
probability-based Markov chain model to estimate regional long-term
electric power demand [31]. Ky and Fuente (2016) used combination of
Markov model and fuzzy time series model for forecasting stock market data
[16]. KJral and Uzun (2017) used Markov chain of the fuzzy states to

estimate stock market index [12].

1.2 Crisp VS Fuzzy
A classical (crisp) set is a collection of well-defined objects called elements
(terms or members) and the set is denoted by capital letters and the elements

of a set are denoted by small letters [9]. An example of a crisp set:

—
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Figure 1-1: Crisp set example



Therefore, the membership function or characteristic function is defined by
[5]:

_ {1, x €A
Haw = o, Otherwise

In this case there are two possible options member belongs to set, member
does not belongs to set then the membership function is denoted by
‘I’otherwise ‘0°.

A Fuzzy set is a super set of a crisp set, in a crisp set we only discuss whether

the element is in the set or not. While a fuzzy set includes all the elements

having degrees of membership. The degree lies between 1 and 0 [2], [4] and

[9].
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1.3 Objectives of the Thesis

In order to deal with uncertain and complex nature of the market price
movements, we will use MCFS technique. For this aim, we will categorize
the closing returns of the global market prices return data as fuzzy states.
Then we will determine the Markov transition matrix of the fuzzy states.

Furthermore, we will estimate the preceding expected market price return.

Most financial instruments and other global market price are traded after
hours, although in far smaller volumes. Therefore, the closing return price of
any financial instruments is often different from its after-hours price. So, the
estimation regarding to the return rate of price market has been one of the
most popular topic for the financial area due to its high return. Therefore,
several studies were carried out under the rapid fluctuation of the global

market price to predict the direction of the price movement [8].

The aim of this research is to determine the probabilistic transition matrix of
the closing returns of market prices using Markov Chain Model of Fuzzy
States (MCFS). We use this method in order to consider the information
while system moves between the extreme values of the states which are more
realistic and flexible than the classical Markov Chain techniques. With this
study, we can say that the use of MCFS can give valuable information to the

investors about the market price movements [11].



In order to achieve the desired goal, this study was conducted on a sample of

gold return prices.

1.4 Obstacles Encountered

The problem arose when substituting some values of R, in the

relationship mentioned in the references [11], [12]and [26]

s - (i +1)(0.225 — R,)
L 0.225

The result of the compensation is greater than one, and this contradicts
the definition of the membership function, and after reviewing the
relationship and using the mathematical sequence in finding the value of
S;, it became clear that the attached relationship in Reference [13] is false,

as the correct relationship is as follows:

s (i +1)(0.225) — R,
L 0.225

What confirmed the validity of our conclusion, that the error in the

reference [13] has been amended.



1.5 Structure of the Thesis

The present thesis is organized into five chapters including the present one:
chapter one that includes motivation, objectives and literature review with

clarifying the differences between the classic concept and the fuzzy concept.

Chapter 2 presents some of the fundamental definitions and mathematical
theory of Markov chains and fuzzy set theory.

In Chapter 3, Closing retraction R, was studied as a fuzzy concept, and
several types of fuzzy numbers were applied to R;: triangle, trapezoidal,
parabolic, and K-Trapezoidal-Triangular fuzzy numbers. We create a
Markov model with classic and fuzzy states and compare between them. At
the end, we estimate the expected return price in specific months as an
example.

Chapter 4 deals with the main results.

In Chapter 5, we give our conclusions and comments.



Chapter 2
Basic Concepts

2.1 Stochastic Processes

Stochastic modelling is an interesting and challenging area of probability
and statistics.

We begin with a formal definition. A stochastic process is a family of
random variables {X,}, indexed by a parameter 8, where 8 belongs to some
index set®, where O represents time.

If © is representing specific time points, we have a discrete time stochastic
process and we replace the general subscript 6 by n. Hence, we talk about
the discrete time process {X,, }

In general, for a discrete time process, the random variable X,, depends on
earlier values of the process, X,,_1, X;,_5, ... Similarly, in continuous time,
X(t) generally depends on values X (u) foru < t. Therefore, we are often
interested in conditional distributions of the form
P-(Xe | Xt Xt,_,» r X, )fOr sOme set of times ¢, > tj_y > >t; In
general; this conditional distribution will depend upon values of

Xt Xty s X, [28].



2.2 Markov Processes and Markov Chains

"A Markov process {X,} is a stochastic process with the property that, given
the value of X,, the values of X for s > t are not influenced by the values
of X,, foru < t. In words, the probability of any particular future behavior
of the process, when its current state is known exactly, is not altered by
additional knowledge concerning its past behavior. A discrete-time Markov
chain is a Markov process whose state space is a finite or countable set, and
whose (time) index setis T = {0,1, 2, ...}

In formal terms, the Markov property is that
PXpr = |Xo = gy s Knor = et Xn = 1}
= B X = 1, =

For all time points n and all states i, ..., i,,—1, 1, J.

It is frequently convenient to label the set of all possible values of the random
variable of the Markov chain by the nonnegative integers (0, 1, 2, ...) which
we will do unless the contrary is explicitly stated, and it is customary to say
X, starts fromstate i if X, = i.

The probability of X, in state j given that X,, is in state i is called the one-

step transition probability and is denoted byPi?'““. That is,
PR = PX = J | Xy = i),

)

10



The notation emphasizes that in general the transition probabilities are
functions not only of the initial and final states, but also of the time of
transition as well. When the one-step transition probabilities are
independent of the time variable n, we say that the Markov chain has

stationary transition probabilities (homogeneous); we limit our

discussion to this case. Thus Pi’}

™+1 = p,; is independent of n, and P;;
is the conditional probability that the state value undergoes a transition
fromi toj

In one trial. It is customary to arrange these numbers in a matrix P the

countable square array

And refer to P = || P;; |l as the Markov matrix or transition probability

matrix of the process.

11



The it" row of P, for i = 0,1, ..., is the probability distribution of the
values of X,,,, under the condition that X,, = i. If the number of states
is finite, then P is a finite square matrix whose order (the number of
rows) is equal to the number of states. Clearly, the quantities P;; satisfy

the conditions" [24].

Pij = 0 For l,] = 0,1,2,...

Y Py=tfori=0,1.2,.

(0]
j=0

2.2 The Long Run Behavior of Markov Chains

2.2.1 Regular Transition Probability Matrices

"Suppose that a transition probability matrix P = || P;; Il on a finite number
of states labeled 0, 1, ...., N has the property that when raised to some power
k, the matrix P* has all of its elements strictly positive, Such a transition
probability matrix, or the corresponding Markov chain, is called regular. The
most important fact concerning a regular Markov chain is the existence of a
limiting probability distribution = = (7o, 74, ....,my) , Where mr; > 0 for j =
0,1,....,Nand ) ;m; = 1, and this distribution is independent of the initial
state. Formally, for a regular transition probability matrix P = || P;; Il we

have the convergence

12



limPiS.n) =m; >0Forj=0,1,...,N,

n-x

Or, in terms of the Markov chain{X,, },

lim Pr{Xn =j |X0 = i} =m; >0forj=0,1,....,N.
n—-oo
The convergence means that, in the long run (n — o), the probability of

finding the Markov chain in state j is approximately 7; no matter in which

state the chain began at time 0 "[24].

Definition: ergodic chain A Markov chain is called an ergodic chain if it is
possible to go from every state to every state (not necessarily in one move)

[24]

2.2.2 Estimating of Transition Probability

The transition probabilities represent parameters that have to be estimated,
and one of the suitable forms for time series data is Markov method, when
data is available for each time from the chain. These data represent cases that
the studied phenomenon lies within, and there is a movement or transition of
this phenomenon between the cases. For example, let it be 21 cases that we

can estimate the transition matrix through [32].

The Maximum Likelihood Method (M.L.E) will be used, and it’s one of the
important methods in statistical theory when estimating parameters because

it gives the estimation that have the maximum probability [32].

13



The transition of this type of data is from i, to j,,, suppose that there is a
sample consists of samples of observations as Markov chain and suppose
that the number n; (0) represents the observed elements in case (i) at the time
(t = 0). That the observed elements points towards a chain of cases at time
(t=0,1,2,...,T), so,the Markov process in stability is [32]:

P (X0, X1, s %) = B (%) [1e 0r (XelXe-1) (1)

Let n;;(t) represents the number of observed elements for each
Xy = J, Xe—q = 1),

ny; = Xenyj (t) (2)

The probability in the previous equation can be written in a proportional form

as.

Py (X0, X1, oo X7|1) = Pr(x) [i i (P (3)

As Codman and Anderson explained that the form n;;represents a set of
sufficient statistics and the distribution of n;;(t) can be obtained considering
n;(t —1) = X;n;;(t) of observations that are Multinomial distributed by a

probability (P;;). The probability density function (pdf) for [n;;(t)] is:

Pr(nn(t): N12(t)s - |n’(0)P11» ) =

14



e [T {naCt = D1/ Ty (OB TRV = [Mea(nace = 1t/
[1;n; @) D] I Pi?ij] (4)
So that:

n'(0) = [n,(0),n,(0), ...,n,-(0)] Representsvector element that represents

the numbers
In cases at time (t=0)

If n;;(t) for each (t, i, j) is known, we can get an estimation of the stable

transition probabilities with confirmation of the condition:
ZPij=1,j=1,2,...,n (5)

By taking the logarithm for each sides of the previous equation (4), and by
taking the above condition (5) into consideration by using Langrangian

Multipliers, the Langrang function will be obtained as follows:

log B (X1, Xp,..Xr|n) = X4 (X P —1) (6)

_ log(l_[ Pl - 2’1" (z Pi—1)+c
i i 7

Where c is a constant that represents:

c = log n{ni(t - 1)!/1_[nij G
Lj J

15



To obtain the maximum likelihood function for the previous equation (6),

the partial derivative is taken according to P;;, A; respectively:
d/0P;[X;Xjnijlog Py — X A (X Py — D] =ny;/Pj—2;,=0  (7)
0/ 0A;[ X Xjnijlog Py — 2 AU Py — D] =X P —1=0 (8)

And from equation (6) equal to zero we get:

n; =4 P, 9)
And so,
PRI R
J J
As,
Jj
Then,
Ying =4 (10)

By substitution (10) in the above equation (9), we obtain:

—

P,=n;/%jn; =0 (11)

16



2.3 Fuzzy Logic

The beginning of fuzzy logic is to allow truth values to be any number in the
interval [0, 1]. If p is an atomic proposition, then we let tv(p) denote the
truth of p, trr(p) € [0, 1] for any proposition in fuzzy logic. If tv (p) = 1,
then p is absolutely true, if tv (p) = 0 then p is absolutely false and if, for

example, tv (p) = 0.60 then the truth of p is 0.60 [2].

Basically, a set is defined as a collection of objects, which share certain
characteristics. A classical set is a collection of distinct objects. The classical
set is defined in such a way that the universe of discourse is split into two
groups: members and nonmembers. Consider an object x in a crisp set A.
This object is either a member or a nonmember of the given set A. In case of
crisp sets, no partial membership exists. This binary issue of membership

can be represented mathematically by the indicator function,

_{1 ifxeA
Han™l 0 ifx ¢4

Where Ha, is the membership in set A for element x in the universe. The

membership concept represents mapping from an element x in universe X to
one of the two elements in universe Y (either to element 0 or 1). There exist
a function-theoretic set called value set for any set A defined on universe X,

based on the mapping of characteristic function, the whole set is assigned a

17



membership value 1, and the null set is assigned a membership value 0 [2],

[4] and [9].

A fuzzy set may be viewed as an extension and generalization of the basic
concepts of crisp sets. An important property of a fuzzy set is that it allows
partial membership, i.e. between 0 and 1. Zadeh [30] extended the notion of
valuation set {0,1} (definitely in / definitely out) to the interval of real values
(degree of membership) between 1 and O denoted as [0,1]. 0.0 represents

absolutely false and 1.0 represents absolutely truth.

The fuzzy set 4 in the universe of discourse Q is defined as a set of ordered
pairs (X,uicp) - A={(X, i) | XE Q}where piz(yis the degree of
membership of x in fuzzy A and it indicates the degree that x belongs to 4 .

Clearly n A(x) € [0,1].
The height of a fuzzy set 4 is defined as [4]:

ht(A)=Sup {A(x) | xin X3 (12).

A membership function defines the fuzziness in a fuzzy set irrespective of
the elements in the set, which are discrete or continuous. The membership
functions are generally represented in graphical form. There exist certain
limitations for the shapes used to represent graphical form of membership

function. The rule that describe fuzziness graphically are also fuzzy.

18



Standard shapes of the membership functions are maintained over the years.
The membership function defines all the information contained in a fuzzy
set; hence it is important to discuss the various features of the membership
functions. For a fuzzy set A a membership function, denoted by 4, maps
R to the membership space N, i.e. uz):R—N. The membership value
ranges in the interval [0,1], i.e. the range of the membership function is a
subset of the non-negative real numbers whose supremum is finite. The

main basic features involved in characterizing membership function are the

following:

(i) The core of a membership function for some fuzzy set A is
defined as that region of universe that is characterized by
complete membership in the set A. The core has elements x of

the universe such that pz(,,= 1. The core of a fuzzy set may be

an empty set.

(i)  The support of a membership function for a fuzzy set A is
defined as that region of universe that is characterized by a
nonzero membership in the set A. The support comprises

elements x of the universe such that 4., >0.

19



(iii)  The boundary of a membership function for a fuzzy set A is
defined as the region of universe that contains a nonzero but
not a complete membership. In other words the boundary
comprises those elements x of the universe such that

0< ,LlA(x)<1.

(iv) The boundary elements are those which possess partial

membership in the fuzzy set A [2],[4]and [9].

2.4 Fuzzy Numbers

A fuzzy number is a convex (the lines connecting them lie completely inside

the shape) and normal fuzzy set of the real line R that is,

(i) 3xo € R With g, =1

(i) wacx) Is a piecewise continuous, and its membership function is defined

as.
fa(x), a, <x<a,
o 1, X =a,
Ha@ = ga(x) , d S X = az
0, otherwise

20



Where 0 < pz,) < 1 and a,, a, and a3 € R such that, a; < a, < a; and

the two functions f,, g4: R — [0,1] are called the sides of the fuzzy numbers

[4].

2.5 Special Type of Fuzzy Numbers

2.5.1 Triangle Fuzzy Numbers

“A triangular fuzzy number N, (Figure 2.1), is defined by three numbers

a,; < a, < as where:
(WD)N@x)=1latx =a,

(2) The graph of N(x) on [a,, a,] is straight line from (a,, 0) to(a,, 1) also;

on [a,, as] the graph is a straight line from (a,, 1) to (as, 0).
(B)N(x) =0Forx < a, or x = as.

We write N = (a,/a,/a3) for triangular fuzzy numberN. If at least of the
graphs described above is not a straight line (curve), then N is called

triangular shaped fuzzy number and we writeN ~ (a,/a,/as).

A fuzzy number N = (a4, a,, a3) said to be triangle fuzzy number (TFN) if

its membership function is defined as below “[4] and [18]:
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) a <x<a,
a, —a,
.y 1 , X =a,
Hix) = az — x
, a, <x < a;
as —a;
\ 0 , otherwise
M v
A
f I - -
7\
/ \
SN
/ N
/ N
/ | \
// \\
/ \
/ | N
/ AN
/ AN
.{/ J. \\.
X
al 52 s

Figure 2-1: Triangular fuzzy number A= (a4, a,, as)

2.5.2 Trapezoidal Fuzzy Numbers

“A trapezoidal fuzzy number N is defined by four numbers a; <a ;<a 3 <as

where:
(1) N(X)Zl on [az, ag]
(2) The graph of N(x) on [a1 , a,] is a straight line from (a1 , 0) to

(a2, 1) and on [as, a4] the graph is also a straight line from (a3, 1) to (a4,

0).
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(3) N(x)=0 for x < a;0r x> a4
We write N = (a1, az, as, as for trapezoidal fuzzy number N. Its

membership function is defined as below (Figure 2-2) “[4] and [18]:

f X — a1
) a, <x<a,
a, — a4
. 1 , a, < x <as
Hix) =Y az —x
) az < x < ay
as — a;
\ 0 , otherwise
p (X)
A
7 I . .
| |
| |
| |
. l l SR
al as as ad

Figure 2-2: Trapezoidal fuzzy number A= (a4, a,, as, a,)

2.5.3 Parabolic Fuzzy Numbers

A fuzzy number A = (a4, a,, a3) said to be parabolic fuzzy number (PFN)

(Figure 2.3) if its membership function is defined as below [2]:
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( 2
, ag<x=<a
az - (11) ! 2
1 ) x = a
M) = 9 az —x i
)2 , a, <x< a;
as — a
. 0 ) otherwise
U (0
4 K=TFN{a1, a2, a3}
/N — — — K=PFN{a1, a2, a3}
I A
/ / \\\ N
/ // ‘ \\\ \
/ \\
,’/ ,'/ \\\ \\
/_/ \.\
ﬂ/ \
{ / ‘ \\\ \
/ \
A S
al a2 a3

Figure 2-3: Parabolic fuzzy number A= (a4, a,, as)
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2.5.4 K-Trapezoidal-Triangular Fuzzy Numbers

“Fuzzy number that is determined by n real numbers a,,a,, ..., asi+3
andc;,0<c¢; <1,i=1,2,..,k, wherenisamultiple of 3, K is the number
of trapezoidal and a; < a, < - < ayr4+3 (Figure 2-4). Denote it by

"T(cl....,ck) = (a4, a,, ..., Ay +3) and whose membership function is given by

ci(x —ay)
;; a, <x< a,
(a; —aq)
Hig, o) =3

—c1 (X — Azk42)

Aok+2 — A2k+1

) Aoks1 S X =< Aoy

\ 0 , X = Aopan

1- M, e (x) is a line from (a4, 0) to (a,, c;) and from (a,x41,¢1)
10 (azx+2,0)

2- HA, oo (x) Is aline from (a;;4,¢;) 10 (Aj42,C41)i = 1,2, ...k —
1.

3- #A(Cl,___,ck)(x) Is a line from (ag 344 C—i) 10 (Apyatir Ck—i-1)i =
0,1,2,..k—2.

4- M, e (x) is a line from (ag4+q,¢x) t0 (arsy, 1) and from
(g2, 1) 10 (g3, k)
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5- HA o (x)=0forx < ay,x = ayp43

M
T - = = — /7\\\
N
x | N
/| | N\
! | L\ 5
al al a3 a4 ad

Figure 2-4: K-Trapezoidal-Triangular fuzzy number A= (a4, a,, as, a,, as)

We called such a fuzzy number a k-trapezoidal-triangular fuzzy number.
If k=0, a k-trapezoidal-triangular fuzzy number is a triangular fuzzy

number.
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2.6 Statistical and Mathematical Concepts

1) The midpoint of an interval AB is the point that divides AB in the

ratio 1:1.

Bixa,ya)

M
Ay

X Y

Figure 2-5: Midpoint of an interval.

Assume that the point A has coordinates (x;,y;) and the point B has
coordinates (x,, y,). It is easy to see, using either congruence or similarity

that the midpoint P of AB is [22]:

X1+X; Y1tY2
=) (13)

2) Let X be a discrete random value with set of possible values D and pmf
(Probability mass function) P(x). The expected value or mean value of X,

denoted by E(X) or uy or just u, is [7]:

E(X) = ux = Yyep x. P(x) (14)
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3) The Mean Absolute Error (MAE) is the average of all absolute errors. The

formula is [1]:
MAE = % " |x; — x| (15)

Where n = the number of errors, i.e. |[x; — x| > 0

|x; — x|=the absolute error (the difference between the actual value and the

expected value).

4) The Greatest Integer Function is denoted by y =|[x]. For all real numbers,
X, the greatest integer function returns the largest integer less than or equal

to X. In essence, it rounds down a real number to the nearest integer [4].
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Chapter 3
Markov Chains with Fuzzy States and Methodology
3.1. Basics

3.1.1. Probability of Fuzzy Events

Let (Q, A, P) be the standard probabilistic space, where Q denotes the sample
space, A the o — algebra on Q and P a probability measure. A fuzzy set 4 on
Q is called a fuzzy event. Letuz (w), w € Q, uz(w):Q — [0,1] be the
membership function of the fuzzy event 4. Then the probability of the fuzzy
eventd is defined using the integral of Lebesgue—Stieltjesby Zadeh [30] as

the expected value of the membership function of the fuzzy event with

respect to the probability distribution P (uncountable set):

P(A) = [, na (@) dP = E(uy) (16)

And in a countable set is:

P(4) = Zaua (@)P,. (17)

The conditional probability of the fuzzy event 4 given the fuzzy event B is

[20]:

P(A|B) = 2258 pB) >0 (18)

P(B)
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Additionally, the product of two fuzzy events Aand Bis [20]:

o )
ool
=
>
T

[l
o)
oo

(19)

3.1.2. Markov Chains Probabilities

Let X; be the state of the system at time t. we consider a finite state Markov

chain in which the transition probability matrix is

State | 0 1 N
O POO POl PON
1 PlO P11 PlN
P = [P;] (20)
vi,j€{01,.., N}
N PNO PN1 PNN

Where P;; represents the transition probability from state i to state j of one

step,
Pij = O,Vl,] .

Pij=P{Xt+1=j|Xt=i}=P{X1=j|Xo=i} (21)
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With Z?’:O P;; = 1. Moreover, the probability transition matrix of k steps

(where Pi’j IS the transition probability from state i to state j, in k steps) is:

P* =[PP = 0,vi,j €{0,1,..,N} (22)

P§ = PUwr = jIX: =i} = P{X, = jlXo = 1}(23)
The matrix P* is calculated by the Chapman-Kolmogorov equation with:
Pk = (P)k. (24)

Finally, let P, = P{X, =i},Vi €{0,1,...,N}, i.e. P; are the initial state

probabilities of the Markov chain, with ¥~ , P, = 1.

3.2. Markov Chains Probabilities with Fuzzy States

On the state of the system, we define a fuzzy partition, i.e. a set of fuzzy
states {4, 4,,...,A,}, such that each fuzzy subset A4, i€ {1,2,..,n}
represents a fuzzy state or event in the initial Markov chain.

Definition 1. The probability of fuzzy initial state P (4;) = P (X, = 4))is
defined by using the probability of fuzzy event (in a finite situation)

calculated by (17):

p (Ai) =P {Xo = Ai} = Yo P {Xo = shug,(s) = Yo Psug,(s). (29)
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Proposition 1. The conditional probability of the fuzzy state4;, given the

initial state m, with j € {1, ...,n}andm € {0, ..., N}, is:
P(A;lm) = P {X, = A;|Xo = m} = 3 Psiis, (26)
and it represents the transition probability of fuzzy state (of one step)

Definition 2. The Markov chain of the fuzzy final state is defined by the

matrix:
State Ay A, A,
0 P(41]0)  P(4;[0) .. P(4,]0)
1 P(A|1) P4, .. P4,
(i) PA|D) (An|D) @)
T) =
N P(A|N)  P(4,|N) ... P(4,|N)

This matrix gives the transition probability of the initial state m,(m €

{0, ..., N}) to the fuzzy final state 4;, (j € {1, ..., n}).
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Proposition 2. The conditional probability of the fuzzy event K]- given the
fuzzy event Kj,i,j € {1,...,n} is a function of a linear combination of

probabilities P(A;|m), of the form:

Pmlizi(m)
P(4y)

P(4;|A) = P{X, = 4;|%, = 4;} = ZN - P(4;|m) (28)

and represents the probability of transition from the fuzzy initial state (of one

step).

Definition 3. The Markov chain with fuzzy initial state and fuzzy final state

is defined by the matrix:

wn
—+
QD
~—+
@D
=~
ey
X
)
o )
S

A, | P(44|4) P(A|4) - P(An|AY)

_ A, | P(4|A) P(A,|A;) - P(An|A)
F= | . . . (29)

An P(All‘qn) P(AZ|An) P(Anlfin)

The matrix gives the transition probabilities from fuzzy initial state 4; to

fuzzy final state 4;,i,j € {1, ..., n}.
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The matrices Pand P are stochastic, given that the sum of each of their rows

is 1
1. The m" row of the matrix P are the terms: P (4;|m), P (4;|m)...,
P (A, |m)so:

?zlP (A]|m) = ?:1 ZISV:O Pm.uﬁj(s) = ISV:O Pms( 7:1/’%]-(5)) =1

(30)

2. The i" row of the matrix P are the terms:

P(A4|A)P(Aa|Ay), ... P(An|4). S0,

Sin=0Pmz, (M)

P(4))

- %/L)( %=0 Pnliz, (m) (Zj’t:l PP(A]|m))) B

=1 (31)

Lastly, we desire to indicate that the computations of the matrices
Pand P are significantly simplified by using matrix calculus. To this end,

we define matrices Q and S
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"uz, (0)

pa, (1)

luz, (N)

Pouz, (0)
P(41)

Popz,(0)
P(43)

Popz,, (0)
L P(4p)

1, (0)

ti, (1)

ta, (V)

Pruz, (1)
P(4y)

Py1uz, (1)
P(4)

Pyuz, (1)
P(Ay)

pa, (0)7

pa, (1)

ta, (N)]

Pz, (N)7
P(4y)

Pyuz,(N)
P(43)

Pnun(N)

P(An)

(32)

(33)

The matrix Q contains the membership function values of the fuzzy partition

which determines the fuzzy states of the system {4, 4,, ..., 4,,}.

With matrices Q and S, we derive [20]:

P=PQ

P =SP =5SPQ (35)
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3.3 Fuzzy States

In this part we will try to get the fuzzy concept for the Gold return prices:

First, return prices for Gold closing prices will be transformed into 21 states,
from the high loss (S_,,) to the positive high return (S;,), that each state
have the same length (k) that is, all of them have the same chance of

occurrence.

Then, suppose that the return price for a month of a certain year (R, =
0.765).
So, the position of that (R,) is tried to be obtained from 21 states by using

the following relation: (I = %) (36)

where, | is the position and K is the length of each state.

Assume k=0.225, then: I = 9765 _ 34,
0.225

According to the previous result, the position of (R,) is difficult to be

determined certainly and clearly.

But, we can conclude that (R;) is lying between the third and the forth state,
which moves away from the third state to be closer to the forth state by 0.4.

(i.e. it gets closer to the third state by 0.6).
So, the membership degree of (R,) inS; =4 —3.4=0.6

And the membership degree of (R,) inS, =1 — 0.6 = 0.4
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In general, i = [%J , (1= the greatest integer of (%)) (37)

Si=(i+1)—= (38)

Si+1 =1-5;(39)

Let, k = 0.225 as a special case. Then, S; will be:

S, = (i+1) -~
= (1 —
' 0.225
= 0.225(i+1)—-R
S, = 0.225(+1)~R¢ (40)
0.225
Possibility degree of Possibility degree of
R, in § =04 R, in S =06
t () t (3)

P /,ﬁ..\(ﬁ.\/_.ﬁ\

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

? — s o — . 4
\\Rt moved away from (3) towards (4) by (0.4) \
ANy AL AN AN AL /\,/-/
~— — ~— — —

Figure 3-1: Rsas a fuzzy concept
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After monthly percentage changes of the market price are transformed into

21 fuzzy states from the high loss S_;, to high return S;,

Next, we will apply different types of fuzzy numbers to the return price R:

1) Triangle Fuzzy Numbers:

S:;'—WJ S:O'—FJ S:l:-!; S; ) wf—CJ 5‘;—5} S‘f—‘) S:f-ﬂ S‘:’—?J s;—') §(UJ S"(l) g}:] S‘;ﬂ S;‘J S:’(d) 5‘;) S‘;’J 5;1 S‘;‘J S}'U}
1
Figure 3-2Triangle fuzzy states for R,

By using the equation of a straight line T
given two points on it /N

/ol

,/ ‘ “\‘,_
Y—=YV1 — Y2—YV1 (41) / \\\
X—X1 X2—X1 / ‘ \
r/‘ \\
the points are : (i-1)(0.225)  (i){0.225) (i+1)(0.225)
(xq,y1)= ((l +1)(0.225), ()) Figure 3-3: Coordinctvtes triangle fuzzy
state

(x2,¥2) = (()(0.225),1)

y-—0 . 1
x—(i+1)(0.225)  —0.225

38



_ x—(i+1)(0.225) _ (i+1)(0.225)—Ry
o —-0.225 o 0.225 :

“Triangle relationship”

which is similar to Eq (40)

Thus, the correct modification of the mathematical relationship that was

presented incorrectly in the references [11], [12]and [26] as:

(i+1)(0.225—R;)
0.225

(Before modification)
Was reached, and this was verified from the reference [13] that modified it
exactly as we reached it.

(i+1)(0.225)—R;
0.225

(After modification)
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2) Trapezoidal Fuzzy Numbers:

e

S( -10) S( -9) IS‘( -7) S( -6)

S( -2)

Sf 10)

S( -4§) S( —4) S( -3)
NN N
VA VA (VAU (VAU

Sr— 1) S(a) Sﬁ) Sr:) S(a) Sm Srs) Sra) S(v) S{a ) S{s ]
XX WOC MM XWX
(VA 1AL (VAU (WA 1AL VA YAy (VAU (VAU [VAY 1AL 1AL

Figure 3-4 Trapezoidal fuzzy states for R,

Which means — if R, € (a,,a3) > S§; =1

(ag—aq)

But— i = [oRTtSJ  where 0.15 =~~~

Since, R; € (a,, a;) — there is more than one value of R, gives integer

number (i) s
f’\
(i =—t) 7
L= / \
0.15 //1 [\\
/ ‘ ‘ \\\
/ BN
/ \
/ | | \
a= 0= o= a=
=% th, th’ . Rnt' =1 % 0_15 (i—1)(0.225) (i—1,/3)(0.225) (i+1/3)(0.225) (i+1)(0.225)

“For the same i”’ contraction Figure 3-5 : Coordinates trapezoidal fuzzy state

So, we will deal with single value of (a,,as)

Take: Midpoint of an interval.

The midpoint of an interval AB, is the point that divides AB in the ratio 1:1.
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Assume that the point A has coordinates (x;,y;)and the point B has

coordinates (x, ,y,), the midpoint P of AB is [22]:

(x1 tX; Y1+
2 ’ 2

)

The midpoint of (a, , a3) “average” — Lot

(i —3) (0.225) + (i +3)(0.225)
2

(0.225)i — g (0.225) + (0.225)i + § (0.225)
- 2

_2(0.225)i
B 2

= (0.225)i
= a, In the triangle fuzzy number.

3) Parabola “Triangle Shape” Fuzzy Numbers:

S(-SJ S(—&J S(-?J lS‘(—GJ S(—5J S(-4J S(--?) S(-?J S(—U (0) 5'(U S(EJ S(SJ S{‘) S(SJ Sr&‘) Sf?J S(EJ S(S) S(NJJ

v D G ) 7N T 7 7 Py (R 7N R A TN A ) Py T d
v Y Y Y N Y Y Y Y Y ;o Y 7N AN Y PN ;o o v
\ (Y} . \ ’ v i \ ; v i \ . s ’ v ' v U v ’ v U ' ’ \ . \ r v ’ v ’ v U ' ’
\ A ’ LYAY] YAV LYAY] YAY Ve YAY YA VAN LYAYS YA YAV YAV YAV (YA LYAYS VAN VNG

o L
v o v v v v v v v v v v v v v v v v v v
" . v " " " " " " " n " " " " " " " " " LA
o LR Y Y TN Y Y o 2N o o ) e P Y N Y N L
) 1 ) Y Y Y Y TS b ;o ;o PR b PN oo Y roo P s LA

Figure 3-6 : parabola fuzzy states for R;
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By referring to the parabolic membership function [2], we note that the

relationship is the square of the triangle membership function

~ (i+1)(0.225)-R
Si=1 0.225 ]

(42)

And since through the first

paragraph in Section 3.2 we have concluded that the principle of the
fuzziness in the estimation of the states for the return in prices is identical to
the relationship of the triangle, this means that the use of this type of fuzzy

number gives less accurate results.

Example:
s,
Take R, = 0.5175 | 7
= = 42O = . / TN
‘= 0225 l VY
. \1
In general using Eq (40) Figure 3-7: Coordinates parabola fuzzy state
Si=(@+1 Re _ o, triangle"
= 05 = intriangle
R, = 05175, §, =3 -2 =07
0.225

error = 0.7 — 0.7
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In parabola:
For R, = 0.5175
S, =(0.7)2 = 0.49

error = 0.7 —0.49 = 0.21

By comparing the result between the fuzzy concepts that was explained in
Section 3.3 (using Eq (40)) with the result that emerged from the application

of the Parabola relationship (using Eq (42)).

we note that the Parabola does not give an accurate result as the error rate is

equal to 0. 21 in the example that was taken.

4) K-Triangle-Trapezoidal Fuzzy Numbers:

Figure 3-8 K-triangle -trapezoidal fuzzy states for R;
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For lineL;:

(x1,y1) = (( +1)(0.225) ,0)

(Xs.7,) = ((i +1) (0.225),0.501)
»J32 2 /]

Using (41):

y—0 05010
X—as a,—as

—(0501)(“5_x> <R <
y = . s — a, , Ay = R¢ = As

- = (0.501) (a i Rt)

For example:

Let R, = 0.5175

105175
L= [ 0.225 J

R,
0.225

=23-55,=3-23=07

R, € ((i + %) (0.225), (i + 1)(0.225))

=~ (3)(0.225)-0.5175
S0, 53 Inmost7s= (2E205T8) (0.501) = 0.7014 ~ 0.7

Error =0.014
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Take C; = 0.5001

— S, |r,=05175= 0.70014, Closer to 0.7

error = 0.0014

So, the closer the C; value to 0.5, the more accurate the result.

The best result when C; = 0.5

5 = <(i +1)(0.225) — R,

0.1125 >(0'5)

~ (i+1)(0.225) — R, .
S; = - triangle fuzzy number.

0.225
For line L, : ,
5,
= (io.225)
(x1,y1) = (az,1) - = =
// \\\E\\
7 (i 1/2)(0.225)
(x2,¥2) = (a4,0.501) e e | 5
/ ‘\.L’
f"f ‘ ‘ \\
| \ - R,
(i—1)(0.225) (i—1,/2)H0.225) fi+1)(0.225)
Using Eq (41): Figure 3-9: Coordinates K-triangle-trapezoidal
fuzzy state
y—1 —0.499
- = ) az; <Ry <ay

x_a,g a,4__a3

—0.499)

y—1=&-as) (0.1125
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i R, — i(0.225)
Si=1-(0499).( ~—7r5z

Let Rt = 051 € (ag, a4)

, 0.51 i
i=2- oo =227 =5, =3-227=0733

0.51 — 2(0.225)
0.1125

S, =1- (0.499).( ) =0.734

error = 0.001

3.4 The Sample and Methodology

3.4.1 The Sample

The study includes monthly data between January 2010 and July 2020. The

monthly weighted average of the gold price received from Istanbul.
The return R; were calculated as monthly percentage of the gold price

Ry = ((P; — Pi_1)/P:—1) * 100%, [26] and [6] where t denotes the sessions

(t=2,3,..,127).

The average return uj is approximately 0.46%, when the standard deviation

is 3.69%.

For the given period which is 8 times higher than expected return.
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3.4.2 Building the Markov Chain Model (MC)

Closing returns of the gold price are transformed into 21discrete categorical
states from high loss S_;, to the positive high return S;, according to

functions below. For this aim, we defined the k integer numbers which

R(+0.12%

Is based onR;ask—1 <
0.24%

< k where: —2.28% < R; < 2.28%

And the k-th Markov states for k € {9, ..., 9} as following [12]:

) _{1, R, > 2.28%
1070, Otherwise

, (2k — 12% < 12%

{1 2k —1)0.12% < R; < (2k+ 1)0.12%

Sk ES .
0, Otherwise
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Tt Moy Moy My My My ¥y My My M4, M M, My My M, My My My My Y _j_l{rfo;
-2.16| —1.92| —1.68| —1.44| 1.2 | -0.96| -0.72| -0.48| -0.24| 0 | 0i24| 048 | 07z | 0.96 | 1i2 | 1i44| 1i68 | 1.92 | 2.16

-228 -204 -1.8 -156 -1.32 -1.08 -084 -06 -036 —0.12I0.12 036 06 084 108 132 156 18 204 228

Figure 3-10: Discrete categorical states
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Table 3-1: Transformed States of the monthly Closing Returns for Some months

Date R, |S10S.o Sg S, S S5 S S35, 5158 S S, S3 S, S5 S¢ S; Sg
01-2010 -21236% (0 1 0 O 0 0 O 0O 0 0 o 0 O OO O o0 oO0wO
02-2010 18027% (0 O O O 0O 0 O 0o 0o 0 o 0 O OO0 O 0001
03-2010 29%11% (0 0 0 O 0O 0 O o o 0 0O O O OO0 o0 o0oO0@wWO
07-2010 14602% (0 O O O 0O 0 O 0O 0o 0 o 0 O OO0 O 1 00O
10-2010 21288% |0 0 O O 0O 0 O 0O 0o 0 o 0 O OO 0o o0 oO0wDO
11-2010 15839% |0 O O O 0O 0 O o o 0 0O O O OO0 o0 o010
12-2010 -23708% |1 O O O 0 0 O 0O 0o 0 o 0 O OO O o0 o0wDO
01-2011 079%66% (0 O O O 0O 0 O o o 0 0o O O 1 o 0 o0 O0@WO
05-2011 10708% |0 O O O 0O 0 O 0O 0o 0 o 0 O O1 0o 00O

08-2011 1201% o 0 O O O O O O O O O O O OO 1 00O
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As it is shown in Table (3-1), we transformed 126 closing returns of Gold
price to the defined 21 discrete states. Then, we calculated all transitions
numbers of states from the present session to the next session for the period
considered. We also used conditional probabilities of the Markov chain to
obtain one-step

Transition probability matrix, which is shown in Table (3.4).

If we apply the

previous

relation:

P

PQ

SP = SPQ [20] With the aim of linking the two models: MC &

P
MCFC

The following results will be obtained:
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Table 3-2: Matrix S
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Table 3-3: Matrix Q
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P= one step transition probability matrix Estimated by Maximum

Likelihood Method (M.L.E)

P=0ne Step Conditional Probability Matrix

53



0.2581

0.0000

0.6667

0.6000

0.5714

0.3333

0.0000

0.0000

0.0000

0.0000

0.0000

0.5000

0.0000

0.3333

0.0000

0.6667

0.0000

0.5000

0.0644

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0644

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0644

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.4000

0.0000

0.5000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Table 3-4: One-step conditional probability matrix (P)

0.0323

0.0000

0.0000

0.0000

0.1429

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.5000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3334

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2000

0.0000

0.0000

0.0000

0.6667

0.0000

0.0644
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
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0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.2000

0.2857

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0968

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0968

1.0000

0.0000

0.2000

0.0000

0.0000

0.5000

0.0000

1.0000

0.2000

0.3334

0.0000

0.8000

0.3334

1.0000

0.0000

0.3333

0.5000




Sg 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
So 0.0000  0.0000 0.0000 0.0000 0.2000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.2000 0.0000 0.0000 0.2000 0.0000  0.0000  0.4000

S10 0.2000  0.0000 0.0286 0.0571  0.0286  0.0000  0.0000  0.0000 0.0286 0.0286  0.0286 0.0571 0.0000 0.0286 0.0286 0.0286  0.0000 0.0000  0.0000 0.0857  0.3713

Based on the results of S&Q matrices, which appeared in the form of the identity matrix, this is an indication of the validity of

the relationship used to connect the two models

gl
Il
2
gl
Il
2!
o
o

Lastly, we calculated the probability of next month closing return state P (x;) by multiplying present return state and the

conditional transition matrix. We calculated the expected closing return R.for next day [12] by using Eq (14):

Ry = z xi P(x;)

1

Where x;denotes the middle points of the states for i = -9, . . ,9 and the boundaries of the states for i = —10, 10.
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at

3.4.3 Building the Markov Chain model with Fuzzy States

(MCFS)

Closing returns of the Gold price are transformed into 21 fuzzy states from

the high loss'S_, 4to high return'S,,, which is shown in Figure (3-11).

We use triangular fuzzy numbers to obtain the membership degree of R, to

the fuzzy states.

(-10) S(—BJ Sf—!} -2 Sl’ —8) SH’ -8) S( —4) 5}4) S(—?J S(—'J ) S'(’IJ S(-TJ Sfﬂ] Sr 4) S(G) S(GJ Sff’) S{ 8) Sﬁ) S{ 10)

Figure 3-11: fuzzy state for gold return price

Let [x] be the greatest integer function and R; is the closing return of Gold

price. We define fuzzy state components of the returns S; and S;., as

follows:
If —2.25% < R, < 2.25% then i = |2 ] and §; = “2020R
S~l+1 =1- S~l

If R, < —2.25% 0r R, = 2.25%then S_;, = 1 or §;, = 1respectively [13].
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Date

01-2010
02-2010
03-2010
07-2010
10-2010
11-2010
12-2010
01-2011
05-2011

08-2011

R,
-2.12%
1.80%
2.95%
1.46%
2.13%
1.58%
-2.37%
0.80%
1.07%

1.2%

Table 3-5: Transformed fuzzy states of the closing returns for some months

S_10

44
0

0

S.9 S8
56 0
0 0
0 0
0 0
0 0
0 0
0 0
0o 0
0o 0
0 0

S7 S Ss
0 0 o0
0 0 0
0 0 0
0 0 o0
0 0 o0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

S, S3 S, 854S,

0

0

0

0

0

0

0

0

0

S1 Sz S3
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 46
0 0
0 0

Sa S5 Se
0 0 0
0 0 0
0 0 0
0 0 51
0 0 0
0 0 0
0 0 0
54 0 0
24 76 0
33 67 0

S7 Ss
0 0
0 .99
0 0
49 0
0 0
96 .04
0 0
0 0
0 0
0 0

Therefore, R, numbers are transformed to the triangular fuzzy numbers for

the time considered

Within this framework, MCFS that depend on the fuzzy set theory gives

more precision and realistic description to the problems than the MC.

Then we calculated the fuzzy transition probability matrix by using the

conditional probability of the fuzzy state S‘J-given the fuzzy state’S;. With this

way, we replaced fuzzy transition probability with crisp transition

probability.

Then we obtained the probabilistic transition matrix of the fuzzy states by

using

P = SP = SPQ
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First, monthly percentage changes of the gold price are transformed into 21

fuzzy states from the high loss S_;, to high return Sy,.

We classified the states as triangular fuzzy number.

If —2.25 < R, < 2.25%then i = ||

_ (i+1)(0.225)—R _ _
Si= 0.225 g Sirn =15,

If le < _225 or Rt = 225 then S~_10 =1 ,S~10 =1
To obtain the Markov chain of the fuzzy states:

P =SPQ

P = transition probability matrix
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0.2581

0.0000

0.6667

0.6000

0.5714

0.3333

0.0000

0.0000

0.0000

0.0000

0.0000

0.5000

0.0000

0.3333

0.0000

0.0644

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0644

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.0644

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.4000

0.0000

0.5000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.1429

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

Table 3-6: Transition probability matrix.

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.5000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3333

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3334

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0323

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2000

0.0000

0.0000

So
0.0644
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
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$1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

Sz
0.0323
0.0000
0.0000
0.2000
0.2857
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

S3
0.0323
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

Ss
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

Ss
0.0000
0.0000
0.3333
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.2000
0.0000
0.0000
0.0000
0.0000

0.0000

Se
0.0968
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

Sz
0.0323
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

Ss
0.0323
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

S
0.0323
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.2000
0.0000
0.0000
0.0000
0.0000

0.0000

0.0968

1.0000

0.0000

0.2000

0.0000

0.0000

0.5000

0.0000

1.0000

0.2000

0.3334

0.0000

0.8000

0.3334

1.0000




0.6667

0.0000

0.5000

0.0000

0.0000

0.2000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0286

0.0000

0.0000

0.0000

0.0000

0.0000

0.0571

0.0000

0.0000

0.0000

0.0000

0.2000

0.0286

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0286

0.0000

0.6667

0.0000

0.0000

0.0000

0.0286

0.0000
0.0000
0.0000
0.0000
0.0000

0.0286
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0.0000

0.0000

0.0000

0.0000

0.0000

0.0571

0.3333

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0286

0.0000

0.0000

0.0000

0.0000

0.2000

0.0286

0.0000

0.0000

0.0000

0.0000

0.0000

0.0286

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0857

0.0000

0.3333

0.5000

1.0000

0.4000

0.3713




The decision maker associates the decisions with 21 fuzzy states denoted
{$_10,S_9,...S10} which correspond to ‘‘membership degree of closing

return price R;”’

These fuzzy values or fuzzy states {S_;0,S_o,...S10} make up a fuzzy

partition of X, where X is the set of status of the system i.e.

{8-10,5-9, - 510}

(X0 indicates the status: “state position “i=0" relative to the value of closing

return priceR,” .. .).

We use the standard notation to denote a fuzzy number of the discrete set:

S ={(i,us)/i = —10,...,10}

So, the fuzzy values {S_10,S_o, ... S} are written:
S_10 ={(=10, 45, (=10)), (=9, u5_,, (=), ..., (10, 5, (10))}

§_o = {(=10,u5_,(=10)), (=9, us_,(=9)), .-, (10, p5_, (10))}

S10 = {(—10, u5,, (=10)), (=9, 5, (=9), ..., (10, 5, (10))}
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Where us s, -, s, denote the membership functions of fuzzy states
of {S_10,5_9, ... $10} 50, ps_, (—10) is the degree of possibility that the i"
position of closing return price R, with i = —10 has of belonging to the

fuzzy state S_,,

ts_,,(—9) Is the degree of possibility that the i"" position of closing return

price R, with i = —9 has of belonging to the fuzzy state S_,

Us ., (=10)  pe (10) - pg (—10)
ts ,(—9) ts_,(—9) ts,,(—9)
Q =
| ps_,,(10) ts_,(10) s, (10) |

If there are more than one value of R, that have the same position i, hence,

we have a group of finite numbers (n) for the same g, (i). Where, pg, (i) is

a fuzzy number that if we define that values in a group4;, the value of:
ht (A) = A;

ht (A) = Max {us, (), us,, (D), ..., u5, (D} = pg, (D)

And since, S;41 = 1 —§; 50, pg,, () = 1 — pg, (i)

b

And other values in the same row = 0. “For the samei.’
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0

0.1960

0

0.8040

0.6813

0

0

0.3187

0.7923

0

0

0.2077

0.8829

0

0

0.1171

0.9950

0

0

0.0050

0.8123

0

0

0.1877

0.7368

0

Table 3-7: Matrix Q

0

0.2632

0.7914

0

0

0.2086

0.9840

0

0
0.0160
0.6779

0
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S1

0
0.3221
0.8715

0

Sz

0
0.1285
0.6038

0

S3

0
0.3962
0.7242

0

Ss

0
0.2758

0.2504

Ss

0

0.7496

Se

0

S7

Ss

S
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0

0.6581

0

0.3419

0.5102

0

0

0.4898

0.9603

0

0

0.0397

0.9880

0

0

0.0120

0.9227

0.0773




P_10ls_,, (—10) P_ous (=9 PlO.LlS‘_lo(lO)_
P(S~—10) P(g—lo) P(§_10)
P_jous (—10) P_ous_, (=9 P10H5'_9(10)
s| P69 PGS-o) PGE-o)
P_1olts,, (—10) P_ous,, =9 Piols,, (10)
P($10) P($10) P($10)

We assume that the initial state probabilities P; are all equal, so pi = 1/21.

With P; we calculate the fuzzy initial stateprobabilities using Eq. (25)

= P(5;) = Z Py s, (s).

S=-10

P; = The probability of beginning of state (i).

Table 3-8: the probability of fuzzy initial stateP(S;) =P (X, = S;)

S0 So Sg S Se S5 Sa4 S3 S, Sy So Sy Sz S3 Sy Ss Se S7 Sg Sy S10

P(S‘) 0.0476  0.0093 0.0707 0.0529 0.0519 0.0530 0.0389 0.0440 0.0502 0.0568 0.0330 0.0568 0.0349 0.0534 0.0251 0.0670 0.0406 0.0691 0.0489 0.0445 0.0513
i
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0.4587

0.2869

0

0.7131

0.1904

0

0.8096

0.1053

0

0.8947

0.0061

0

0.9939

0.2030

0

0.7970

0.2496

Table 3-9: Matrix S

0

0.7504

0.1749

0

0.8251

0.0230

0
0.9770

0.2699
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0

0.7301

0.1755

0

0.8245

0.3536

0

0.6464

0.5241

0

0.4759

0.5325

0

0.4675

0.4013

0

0.5987

0
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0.3378

0

0.6622

0.0386

0

0

0.9614

0.0128

0

0.9872

0.0718

0

0.9282




The transition probability matrix corresponding to the fuzzy states

{S~—101 S~_9, S~10}

P =[P(4;/4;)] Obtained with:P =SPQ, and is:
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0.3058

0.6192

0.5769

0.3584

0.0021

0.3650

0.0877

0.2155

0.1747

0.0958

0.0461

0.2363

0.0016

0.2581

0.0713

Table 3-10: Probabilistic transition matrix of the fuzzy states

0.0619

0.0004

0.2914

0.0758

0.341

0.0775

0.1150

0.015

0.0386

0.0011

0.0427

0.0103

0.2144

0.1738

0.0006

0.0001

0.4037

0.0825

0.0011

0.0009

0.0061

0.0933

0.019

0.2399

0.0663

0

0

0.236

0.0016

0.0857

0.0237

0.0622

0.0004

0.1623

0.0696

0.0026

0.0011
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0.0208

0

0

0.0195

0.0861

0.1627

0.0182

0.0565

0.1067

0.0119

0.5772

0.1808

0.2198

0.0688

0.1006

0.0629

0

0

0.1086

0.003

0.0523

0.0327

0.0564

0.0016

0.0784

0

0

0

0

0.0331

0.0301

0.1523

0.0042

0.5413

0.1426

0.0381

0.4969

0.1015

0.7504

0.3527

0.3306

0.09

0.6596

0.4983

0.6506




0.3117

0.2675

0.3311

0.0193

0.1856

0

0

0.0063

0.0036

0.0184
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0.0941

0.0808

0.0068

0.0617

0.0530

0.0192

0

0.0734

0.5325

0.1996

0.4437

0.9807

0.4077

0.3796




In Table (3-10), the closing returns of gold price are considered as a
stochastic process with 21 fuzzy state {S_,,,5_,..S10} Space with
Markovchain structure. The conditional partition degree of passing from

state S, to S is P(S¢|S,) = 0.16%.

Lastly, we calculated next month closing returns partition degrees to the
states P(x;), by multiplying present return partitions and the conditional
transition matrix of the fuzzy states. And we calculated the expected closing

return R,for next month by using Eq (9).

Rt = z_xi ﬁ(xl)
l
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Chapter 4
Main Results

4.1. Explanation

The MCFS model gives information about risky months. When a monthly
return basically increased (2.25% or greater), the next months’ return also
basically increased or decreased with the probability of 37.96 % or 18.56%
respectively.

On the other hand, when a monthly return substantially decreased (2.25%
or greater), the next month’s return also increased or decreased with the
probability of 9.93% or 25.81% respectively. This result is not significantly
different from that of the MC model in Table 2.As in the MC model gives
datum about risky months also. When a monthly return increased (2.25% or
greater), the next months’ return also increased or decreased with the
probability of 37.14 % or 20% respectively. On the other hand, when a
monthly return substantially decreased (2.25% or greater), the next month’s
return also increased or decreased with the probability of 9.63% or 25.81%
respectively. This is not sufficient to rely on it to obtain accurate results, so
we predicted a closing return price of a particular month and compared the

results of both models: MC & MCFS models.
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4.2 Estimated closing return R, Using MC model (Matrix P):

If we want to predict the closing return price of month October 2012, then

the present month will be September 2012.

First, we calculated the probability of next months’ closing return state P (x;)

by multiplying present return state and the conditional transition matrixP.

Where the present return priceR; lg_5912= 0.2539

Table 4-1:Present return state

So, after the present return multiplied by probability transition matrix with

MC (P), the next month closing return state P(x;) will be obtained:
Date Rt S—l() S_g S—B 5_7 S—G 5_5 5_4_ 5_3 S—Z S—l So 51 SZ 53 54 Ss 56 57 SB Sg SlO

09-2012 02539 | O 0 0 0 0 0 0 0 0 0 0 1 0 O 0 0 0 0 0 0 0
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Table 4-2: Probability of next month closing return state

Sio S S Sy S S5 Sa4 Si3 S, 54 So S S S5 Sy S5 S¢ S; Sg Sy Sio

P(x;)) = |05 0 0 0 05 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0
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Table 4-3: Estimated closing return (R,) with MC model for October, 2012

P(x;) |05 0 0 0 05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Xi -2.40 -2.16 -1.92 -1.68 -1.44 -1.20 -0.96 -0.72 -0.48 -0.24 0.00 0.24 0.48 0.72 0.96 1.20 1.44 1.68 1.92 2.16 2.40

Then the Eq (9) is applied:

R, = Exip(xi)

Where x;denotes the middle points of the discrete categorical states for i=—9,.., 9and the boundaries of the states for i=—10,10.

We get R, = —1.92 %
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In table (4-3) we have shown the probability (Prediction) of closing return P(x;) on October, 2012 with MC model and we

calculated the expected return (}?t)

4.3 Estimated closing return R, Using MCFS model (Matrix p):

First, we calculated the probability of next months’ closing return state p(x;) by multiplying present return state and the

conditional transition matrix p

Where the present return price R; lg_5921= 0.2539
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Table 4-4: Present return state

Date R, |50 59853 8§, 5685 5,4 853 5,5,:58 5 5 8§ 5, 5 5 5 S8 S§ 3,

09-2012 02539 | 0 0 0 0 0 0 0 0 0 0 0 87 13 0 O 0 O 0 0 0 0

So, after the present return multiplied by probability transition matrix with MCFS (P), the next month closing return state

P(x;) will be obtained:

Table 4-5: Probability of next month closing return state

5‘—10 3_9 3—8 3'_7 S—6 S_5 5_4_ 5_3 S—Z S—l S‘O 3'1 3'2 3'3 3'4_ 3'5 3‘6 3'7 S'g S'g 3'10

0.036 0.009 0 0049 0078 0.033 0030 0.263

ﬁ(xi) 0.587 0.013 0.096 0.108 0.370 0.078 0.026 0.064 0.021 0.053  0.045 0.021  0.020
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Table 4-6: Estimated closing return with MCFS model for October 2012

$S,5¢ §55s S, 5, 8§, 5, 5 5 S5 8§ S8 5 S

0.096 0.108 0.370 0.078 0.026 0.064 0.021 0.053 0.045 0.021  0.020  0.036 0.009 0 0.049

-1.58 -1.35 -113 -0.90 -0.86 -0.45 -0.23 0.00 0.23 0.45 0.68 0.90 113 135
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Then, the equation (9) is applied:

the boundaries of the states for = —10, ...

R

t =zxip(xi)

Where x;denotes the middle points of the fuzzy states for i = -9, ...,9 and

We get R, = —0.9802% and the actual value of closing return R,=-1,259%

on October, 2012

In table (4-6) we have shown the probability (Prediction) of closing return

P(x;) on October, 2012 with MCFS model and we calculated the expected

return (R,)

Date

October ,2012
October , 2019
November,2010
May ,2020
February,2018

MAE

Table 4-7: Estimated R, for some months

R, with MC model

-1.92%
0.72%
1.20%
1.20%
0%

0.81%

R, with MCFS model

-0.98%

-0.52%

0.88%

0.89%

-0.38%

0.48%

79

Actual

(R)

-1.26%
-1.53%
1.58%
1.06%

-0.62%

le;|with
MC
model
0.66%
2.25%
0.38%
0.16%

0.62%

le;|with
MCFS
model
0.28%
1.01%
0.70%
0.17%

0.24%



In Table 4-7, we have shown some estimation results for some months,
which are chosen randomly. And we used the mean absolute error MAE to
measure how our prediction is close to the eventual outcomes.

MAE = % * 1lx; — x| Where e; denotes the error. From Table 4-7, one can
see that MCFS model is better than MC model for forecasting the gold return
price

4.4 L.ong Run Behavior

4.4.1 Long Run Behavior for MCFS

As the MCFS model can be used to predict the returns for smaller time (one

month), can be used to predict for long run time where:
If a fuzzy Markov chain is an Ergodic (P) [5]:

An = (my, 5, ...)
Such that:

1)  misaprobability vector.

3) nP=nm
71'1 eee nn
4)  lim (P)" = [ o ]
n—oo nl cee nn

By applying the third and fourth conditions on the matrix obtained from the
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data of this thesis, we get:

§—10
S'—10 0.2382
S'—9 0.2382
S'—8 0.2382
S'—7 0.2382
S'—6 0.2382
S'—5 0.2382
S'—4 0.2382
S -3 |0.2382
s -2 | 0.2382
s -1 | 0.2382
30 0.2382
s 1 0.2382
32 0.2382

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

Table 4-8: Long run estimation MCFS

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164

0.0164
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0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979




(P)12=

0.2382

0.2382

0.2382

0.2382

0.2382

0.2382

0.2382

0.2382

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0030

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0282

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0391

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0591

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0309

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0118

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0080

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0394

0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164

0.0164
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0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0245

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0335

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0119

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0291

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0195

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0294

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0083

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.0350

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979

0.2979




Indicating that

(0.2382, 0.0030, 0.0282, 0.0391, 0.0591, 0.0309, 0.0118, 0.0080, 0.0155,
0.0394, 0.0164, 0.0213, 0.0245, 0.0335, 0.0119, 0.0291, 0.0195, 0.0249,

0.0083, 0.0350, 0.2979).

For the previous results, the higher the ratio was for the highest return S;, ~

30%
And then for the highest loss §_,, ~ 24%

This gives us probability distribution for gold price return. In the long run,
no matter the state of gold price in a month, the number of gain months will
be approximately equal to the number of loss. Categories of the states and
the conditional transition probability matrices are calculated in MATLAB

program. If we apply the law of expectation using the equation:

21
Re oo = E TTiX;

i=1

We get,R, = 0.1104%. And its present return state as:
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Table 4-9: Present state for long run R, with MCFS

R, |51084 543 85,86 S5 5S4 553 5, 54 5 5. 85 55 S5, S5 54 5, 55 S5 5y

0.1104 |0 0 o0 0 O 0 0 0 0 0 051 049 0 O 0 0 0 O 0 0 0

4.4.2 Long Run Behavior for MC

As the MC model can be used to predict the returns for smaller time (one

month), can be used to predict for long run time where:
If a Markov chain is an ergodic (P) [5]:

An = (mqy, 5, ...)
Such that:

1) mis a probability vector.

3) @mnP=nm
77:1 cee nn
4)  lim (P)" = [ P ]
n—oo 71'1 eee nn

By applying the third and fourth conditions on the matrix obtained from the

data of this thesis, we get:
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0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.2400

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

0.0559

(P)r—o

Se S
0.0238 0.0401
0.0238 0.0401
0.0238 0.0401
0.0238 0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238 0.0401
0.0238 0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401
0.0238  0.0401

0.0559

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0237

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

0.0155

Table 4-10: Long run estimation MC

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0079

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0162

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0395

0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238
0.0238

0.0238
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S
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166
0.0166

0.0166

Sz
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398
0.0398

0.0398

S3
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240
0.0240

0.0240

S4
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164
0.0164

0.0164

Ss
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241

0.0241

Se
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232
0.0232

0.0232

Sy
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158
0.0158

0.0158

Sg
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077

0.0077

Sy
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405
0.0405

0.0405

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900

0.2900




Indicating that

(0.2400, 0.0155, 0.0238, 0.0401, 0.0559, 0.0237, 0.0155, 0.0079, 0.0162,
0.0395, 0.0238, 0.0166, 0.0398, 0.0240, 0.0164, 0.0241, 0.0232, 0.0158,

0.0077, 0.0405, 0.2900).

For the previous results, the higher the ratio was for the highest return S;, ~

29%
And then for the highest loss §_,, = 24%

This gives us probability distribution for gold price return. In the long run,
no matter the state of gold price in a month, the number of gain months will
be approximately equal to the number of loss. Categories of the states and
the conditional transition probability matrices are calculated in MATLAB

program.
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If we apply the law of expectation using the equation:
21
R, tooo Z T X;

i=1

We get,R, = 0.0740%. And its present return state as:

Table 4-11: Present state for long run R, with MC

R, S10 So Sg S7 S S5 S4 Sz S S,y So Sy Sz 53 Sy S5 S¢Sy

0.0740 |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 O
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Chapter 5

Conclusions
The fruits of this thesis will facilitate the researchers’ effort by abbreviating
the steps in finding the degree of belonging to the return price, and where the
researchers can only rely on the concept of Fuzzy to find the R; site of the
relationshipi = %.

It was also through this work that the error in the relationship was discovered

[11], [12] and [26]

& = (i+1)(0.225—-R;)
i —_—
0.225

Where it was modified and proven using mathematical steps, and what
confirmed the validity of our conclusion, the amendment that occurred in

one of the attached references was exactly as we reached [13].

s - (i +1)(0.225) — R,
L 0.225
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After applying several types of fuzzy number, Triangle Fuzzy Number was

the best to get the most accurate results.

We have predicted behavior of the Gold return price for next month. Using
the MC and MCFS models, forecasts of the monthly Gold price returns were
compared. The results give sensitive and significant information to the
investors about investment opportunities of the Gold return price for the
monthly buying and selling strategies when the present return is known. In
risky months, when a monthly return substantially increased or decreased,
the next month’s return also substantially increased or decreased for both
models. The transition probabilities of monthly returns in non-risky months
would be significantly lower than those in risky months for both models. The
MCFS model can be used to forecast the returns for smaller time (less than
one month) intervals which may give more investment opportunities.
Investors can earn higher than the average return in risky months in a short
run. Besides the MCFS model can be used to predict the returns for smaller
time (one day) and also different classifications and fuzzy sets which may
give more investment opportunities. The probability distribution of gold

showed that, the investors can gain higher return in a long run.

All the results obtained in this thesis were calculated using the MATLAB

program.
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Appendix
% matrix Il with i,s in columnl & si in column2
11=[-10 0.438105233
8 0.987994565
13 0.884045456
21 0.388345898
10 0.644326093
-14 0.12075134
6 0.510219249
21 0.757965259
25 0.926831766
9 0.538609992
7 0.960342963
-11 0.536766896
3 0.459406539
16 0.297435054
16 0.887402043
11 0.61873571
4 0.241038519
11 0.325765407
54 0.887200255

5 0.658078368
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-29 0.143312622

18 0.857615833

-22 0.314158476

0 0.093752574

23 0.651903021

-18 0.347942086

-8 0.036045805

-18 0.099315751

2 0.050895603

-1 0.793276757

9 0.820266067

31 0.220380397

1 0.87149115

-6 0.597967874

-10 0.539171172

-5 0.071097225

-11 0.951836562

-11 0.813431713

-30 0.361587031

-21 0.866295849

-24 0.049461342

-20 0.31497894
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21 0.994962598

1 0.871250526

-12 0.226600537

-13 0.505898331

-20 0.424267008

7 0.185035653

19 0.10478018

12 0.048032253

-13 0.431582238

-4 0.510603952

-4 0.812342476

12 0.780931495

-6 0.41055561

-20 0.078141136

-7 0.360561298

-18 0.127365072

9 0.922688999

18 0.898118838

-7 0.486305537

-19 0.218214966

6 0.368169548

-1 0.211047991
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-6 0.728092255

-20 0.047704975

-6 0.520304942

2 0.064942619

12 0.270826327

-27 0.400727398

-9 0.196015065

75 0.693180437

-7 0.486305537

-19 0.218214966

6 0.368169548

-1 0.211047991

-6 0.728092255

-20 0.047704975

-6 0.520304942

2 0.064942619

12 0.270826327

-27 0.400727398

-9 0.196015065

51 0.275444253

15 0.817351343

-1 0.838520032
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13 0.971693027

-8 0.681279512

5 0.279774253

-10 0.224161086

16 0.224030443

12 0.750834816

-13 0.272591715

0 0.128238858

-7 0.066483148

23 0.425384595

0 0.677873324

-3 0.736760115

3 0.724240569

-11 0.555510623

-8 0.327299869

-16 0.273936502

-13 0.996994591

-1 0.984031127

5 0.245042659

2 0.603849208

10 0.587566728

14 0.15670261
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9 0.322305924
-6 0.882910086
-5 0.994977208
-2 0.791377056
26 0.652026401
18 0.638736923
25 0.082863298
3 0.07122442
-5 0.582056208
-7 0.792297712
2 0.55300877
24 0.783291949
10 0.135706277
-2 0.404926779
24 0.943461865
9 0.564454206
4 0.250391597
27 0.632825948]
% data processing
for k=1:126

if 11(k,1)>10
11(k,1)=10
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11(k,2)=1
elseif 11(k,1)<-10
11(k,1)=-10
11(k,2)=1

end

end

% hight of the fuzzy set
A=zeros(21,2)
for i=1:126
a=I1(i,1)
mx=11(i,2)

for j=1:126

if a==11(j,1)
O=[mx 11(j,2)]
mx=max(O)
Xx=a+11
A(x,1)=a
A(X,2)=mx
end

end

end

% initial probability vector
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pi=[ 1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21
1/21]

% matrix Q
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UU=transpose(pi)
Q=zeros(21)

for j=1:21

if A(j,2)==0
QG.))=0
QG.j+1)=0

else

QU.1)=A(.2)
Q0.i+1)=1-A(.2)

end

end

% matrix S
Q=Q(:,1:21)
tee=transpose(pi)
H=(tee*Q)
TeT=(H)'

QT=transpose(Q)

tte=[tee;tee;tee;tee;tee;tee;tee;tee;tee;tee;tee;tee;tee;tee; tee;tee;tee; tee;tee;te

e;tee]
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TTe=[TeT TeT TeT TeT TeT TeT TeT TeT TeT TeT TeT TeT TeT TeT
TeT TeT TeT TeT TeT TeT TeT]
Se=zeros(21)

fori=1:21

for j=1:21
Se(i,))=(tte(i,))*QT(1.)))/TTe(i,j)
end

end

% vector | cotains i,s position
I=[-10

8

13

21

10

-14

6

21

25

-11
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16

16

11

11

54

23

-18

-18

-10
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-12

-13

19

12

-13
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-18

18

-19
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12

-27

-10

16

12

-13
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-16

-13

10

14

26

18

25

24

10

24
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9

4

27]

% data processing
for k=1:126

if 1(k,1)>10
I(k,1)=10

elseif 1(k,1)<-10
I(k,1)=-10

end

end

% Transfer counter between states

po=zeros(21)

for i=1:125
a=I(i)+11
b=1(i+1)+11
po(a,b)=po(a,b)+1
end

DD=po

s=0;

fori=1:21

=121
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s=s+DD(i,))
s(1,1)=31
5(1,21)=35

end

% probability transition matrix MC

sum=s
PP=zeros(21)
fori=1:21

for j=1:21

PP(i,j)=po (i,j)/sum(i)
end

end

% MCFS
F=Se*PP*Q

% long run estimation

DDD-=transpose(F)
for j=1:21
DDD(j,j)=DDD(j,j)-1
end

TTT=DDD(1:20,)
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W=[111111111111111111111]
DM=[TTT;W]

V=[0

0

0
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0

1]
B=inv(DM)*V
s=0

fori=1:21
s=s+B(i,1)

end

% xi (midd point of fuzzy states)
c=[

-2.25

-2.03

-1.8

-1.58

-1.35

-1.13

-0.68
-0.45

-0.23

0.23

0.45
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0.68
0.9
1.13
1.35
1.58
1.8
2.03
2.25]

% estimation law Rt for lon run vector

Z=zeros(21,1)
sem=0

ToT=F(1,1:21)

UoU=ToT'
fori=1:21
z(1,2)=B(i,1)*c(i,1)

sem=sem+z(i,1)

end

% we set Kimomomommi
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fori=1:21

E=E+F(14,i)
end

W=B"*F

% Rt vector
Rtm=[-2.123573678
1.802701223
2.951089772
4.862622173
2.330026629
-2.952169051
1.460200669
4.779457817
5.641462853
2.128812752
1.583922833
-2.370772552
0.796633529
3.758077113

3.62533454
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2.560784465

1.070766333

2.626702783

12.17537994

1.201932367

-6.33224534

4.082036438

-4.795685657

0.203905671

5.25332182

-3.903286969

-1.583110306

-3.847346044

0.663548489

-0.17848727

2.065440135

7.150414411

0.253914491

-1.259542772

-2.146313514

-0.915996876

-2.464163226
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-2.433022135

-6.606357082

-4.694916566

-5.186128802

-4.345870261

4.726133416

0.253968632

-2.525985121

-2.813827124

-4.370460077

1.758366978

4.476424459

2.914192743

-2.797106003

-0.789885889

-0.857777057

2.749290414

-1.217375012

-4.292581756

-1.431126292

-3.853657141

2.042394975
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4.072923261

-1.459418746

-4.099098367

1.492161852

-0.047485798

-1.288820757

-4.285733619

-1.242068612

0.660387911

2.864064077

-5.940163665

-1.84410339

16.9440344

-1.459418746

-4.099098367

1.492161852

-0.047485798

-1.288820757

-4.285733619

-1.242068612

0.660387911

2.864064077
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-5.940163665

-1.84410339

11.63802504

3.416095948

-0.188667007

2.931369069

-1.72828789

1.287050793

-2.075436244

3.77459315

2.756062166

-2.761333136

0.196146257

-1.364958708

5.304288466

0.072478502

-0.615771026

0.737045872

-2.37498989

-1.64864247

-3.436635713

-2.924323783
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-0.221407004

1.294865402

0.539133928

2.342797486

3.339741913

2.177481167

-1.323654769

-1.123869872

-0.403059838

5.92829406

4.131284192

5.831355758

0.883974505

-1.030962647

-1.528266985

0.550573027

5.448759311

2.444466088

-0.316108525

5.41272108

2.122997804

1.068661891
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6.157614162]

% Q matrix in MC
Qw=zeros(126,2)
Qm=zeros(21)
fori=1:126

for j=1:21

if Rtm(i)>0.12*(2%(j-11)-1) && Rtm(i)<=0.12*(2*(j-11)+1)
Qm(@.j)=1
Qw(i,1)=Rtm(i)
Qw(i,2)=j-11

elseif Rtm(i)>=2.28
Qm(21,21)=1
Qw(i,1)=Rtm(i)

Qw(i,2)=10

elseif Rtm(i)<=-2.28
Qm(1,1)=1
Qw(i,1)=Rtm(i)
Qw(i,2)=-10

end

end

end
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end

end

% S matrix in MCFS

h=pi"”*Qm

Te=h'

QTe=0Qm'

tee=pi’
tte=[tee;tee;tee;tee;tee;tee;tee;tee;tee;tee; tee;tee; tee;tee; tee; tee; tee; tee; tee;te
e;tee]

TTee=[TeTeTeTeTeTeTeTeTeTeTe Te Te Te Te Te Te Te Te Te Te]
SSe=zeros(21)

fori=1:21

for j=1:21

SSe(i,j)=(tte(i,j)*QTe(i,j))/TTee(i,))

end

end

% example for estimation R”t for a specific month
Dad=[000000000000010000000]
Ded=[000000000000.06.940000000]
pap=Dad*PP

pep=Ded*F

cat=zeros(21,1)
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ca=0

caa=-2.4

fori=1:21

cat(i,1)=caa+tca
caa=caa+.24

end

peep=pep’

sees=0

fori=1:21
sees=sees+(peep(i,1)*c(i,1))
end

paap=pap’

saas=0

fori=1:21
saas=saas+(paap(i,1)*cat(i,1))

end

124



