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Mathematical Models Described by Gibbs Measures and 

Phase Transitions on Cayley Tree 

By: Sanabel Abu Oun 

Supervised by Prof. Dr. Saed Mallak 

Abstract  

In this thesis, five models are studied on lattice spin systems which are 

considered in statistical mechanics. A probability measure that's called Gibbs 

Measure is defined for these models on Cayley tree (or Bethe lattice) and the 

existence of phase transition is proved by using two approaches: Markov 

Random field method and Partition Function method. The first and second 

models are related to Ising-Vannimenus Model with three different competing 

interactions on semi-infinite Cayley tree, the analysis of these models is done by 

using Markov Random field method making use of the Kolmogorov consistency 

conditions. To achieve this, we constructed the set of recurrence equations that 

corresponds to the mentioned models and satisfied consistency condition, then 

we analyzed these equations and determined the conditions on the temperature 

and the coupling constants in which the phase transition exists. The third set of 

models (3 models) are called Potts Models, which are a generalization for Ising 

model, we have constructed the recurrence equations for these models by using 

Partition function method. In the same way as the previous models, the phase 

transition conditions are determined. Since we got a high order polynomials with 

complicated factors, we used Wolfarm Mathematica for equations analysis.  

 

Keywords: Gibbs measure, Phase transition, Cayley tree, Competing 

interactions, Ising-Vannimenus model, Potts model. ‎  
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 شجرة عمى السرحمة وانتقالاتمهصهفة باستخدام مقاييس جيبس  رياضية نساذج
 كايمي

سنابل أبؽ عؽن : إعداد   

سائد ملاك  . د.أ: بإشراف   

 السمخص
 

نماذج عمى أنعمة الدحران الذبكية حالتي تعتبر فرع ميػ  في  خمدة، تػ دراسة  طررحةةفي ىذه الأ
عمى  المعرفة عمى ىذه النماذجف مقياس اةتمالي يدمى مقياس جيبس تػ تعري. الميكانيكا الإةرائية

طرريقة ةقؽل ماركؽف العذؽائية حطرريقة : شجرة كايمي حتػ إثبات حجؽد انتقال الطؽر باستخدام طرريقتيؼ 
النمؽذجيؼ الأحل ح الثاني مرتبطان بنمؽذج آيزنج فانيمينؽس عمى شجرة كايمي شبو . اقترانات التقديػ

ةقؽل ماركؽف تحميل ىذه النماذج باستخدام طرريقة  تػمع ثلاثة تفاعلات متنافدة مختمفة ،  يةاللانيائ
لتحقيق ذلغ ، قمنا ببناء مجمؽعة مؼ معادلات التكرار التي تتؽافق مع النماذج المذكؽرة حةالة . العذؽائية 

درجة الحرارة حثؽابت  عمى ذرحطاليذه المعادلات حةددنا لتحميل عمل ، ثػ قمنا بالاتداق المدتؽفاة 
ذج بؽتس حىؽ ادمى نمت الثالثةذج االنم مجمؽعة.لمنماذج الدابقة  ةيرةمم تانتقالانتج عنيا الاقتران التي ي
كما ىؽ .  التقديػ اقتراناتفدرنا معادلات التكرار ليذا النمؽذج باستخدام طرريقة  لقد. آيزنج  تعميػ لنمؽذج

ذات  لأننا ةرمنا عمى كثيرات ةدحد .ظرحف انتقال الطؽر حديدقمنا بتالحال في النماذج الدابقة ، 
  .                              .يالممداعدة بتحميم اقمنا باستخدام برنامج الماثماتيكقد ، ف درجات عالية

                              .                                                          

آيزنج شجرة كايمي، التفاعلات المتنافدة ، ، الانتقالات المرةمية ، مقياس جيبس :  لسفتاحيةالكمسات ا
ل.تس مؽد، بؽ مؽدل فانيمينؽس 
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Chapter One  

Introduction 

As it is well known, Statistical Mechanics is a branch of physics interested in 

explaining the macroscopic behavior of matter based on its microscopic structure. 

This structure is represented as a system of an infinite number of random 

variables attached to vertices of a lattice system (one dimensional or more) such 

that these elements interact with each other according to their position. This 

interpretation was obtained by using statistical methods and probability theory. 

The role of probability theory is to represent this system of random variables by 

using a well- known probability measure called Gibbs measure [28]. 

Although the basics of Statistical Mechanics have already been laid in      

century, but the basics of Gibbs measure and the study of infinite random systems 

began in     's by  R.L. Dobrushin (         ) [21],  D. Ruelle and O .E. 

Lanford         who proposed the theory of Gibbs measure as a mathematical 

description of a huge number of interacting components as an  equilibrium state 

of a physical system [32]. As a result, from probabilistic point of view, a Gibbs 

measure is nothing other than the distribution of a countably infinite family of 

random variables that achieve some specific conditional probabilities. This 

concept has received interests from both mathematical physicists and probabilists, 

which turns many of physical problems and questions to probabilistic problems.  

Cayley tree (or Bethe lattice) is a non-realistic lattice which was introduced in to 

the physical literature in 1935 by the physicist Hans Bethe [14]. The operations 

and calculations on this lattice  are easier and more accurate to calculate and 

understand than the d dimensional     lattice. As a result, many of the topics in 

statistical mechanics have recently been taken into account on the Cayley tree [1-
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10]. The results obtained on the Cayley tree are very helpful on studying and 

analyzing the d-dimensional    lattice. As a result, we see that many researchers 

have employed the well-known models: The Ising and Potts models in 

conjunction with the Cayley tree [36-38, 1-10].  

Ising model is a model that was invented by W. Lenz (1920) [34] and it was 

investigated by his student E. Ising (1924) in his PhD thesis, this model is a 

representation of spins for a substance by    "up orientation " and    "down 

orientation" such that the set          of possible orientation is called the state 

space . The spins form an infinite linear chain, i.e., they are located at the sites of 

  such that these spins interact with each other based on a  Hamiltonian (energy 

function) of the form [28]  

       ∑         

|   |  

  ∑          

   

 

where the first sum is over nearest-neighbor vertices, i.e.,         |   |  

   and the spins      and      take values in the set of state space     

            represents the action of an external magnetic field and   is a real 

number. This model was developed for more dimensions and interactions and 

became an important step towards a mathematical theory of phase transitions 

even though Ising failed to get phase transition for his model [28].  This model 

has a relevance to physical, biological and chemical systems, see [23, 28, 33]. In 

(1981),  Ising-Vannimenus model [55] investigated by J. Vannimenus consists of  

Ising spins (     ) on a cayley tree of order 2, in which two competing 

interactions are presented: nearest-neighbor (NN) interactions and next-nearest-

neighbor (NNN) interactions. Since the appearance of Vannimenus model, the 

Ising model on a Cayley tree (or Bethe lattice) with competing interactions has 

received great attention, see [15, 18, 30, 43, 47, 53],. these studies' investigation 

of Gibbs measures for a developed Ising-Vannimenus model on trees were based 
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on recurrent equations analysis. In 2016, H. Akin used  a new rigorous measure-

theoretical approach to describe a specifically set of Gibbs measures with a 

memory of length 2 that corresponds to the Ising-Vannimenus Model on the 

Cayley tree of order two [5]. In 2017, he dealt with a new Gibbs measures of 

Ising-Vannimenus model with competing NN and prolonged NNN interactions 

on a Cayley tree of order three, such that he found the set of translation-invariant 

Gibbs states for this model using Markov Random field approach [4]. Moreover, 

in (2018), H. Akin generalized his results in [4] to an arbitrary order Cayley tree 

[3].  

The Potts Model is a model Introduced by R. Potts in 1952 [49] as a 

generalization of the Ising model, i.e., with   state space such that    . M. 

Miyamoto (1982) generalized the Spitzer's results of investigation of Gibbs 

measure as a Markov chain on Cayley tree whose state space         to the case 

when the state space is a compact set     . Zachary (1983) also generalized 

Spitzer's   results  to a countable state space on a regular infinite tree [56], F. 

Peruggi  (1984)   studied the properties of one‐step Markov and m‐step (    or 

   ) for translationally-invariant  probability measures on q state model  on 

Bethe lattices [35]. F. Peruggi, F. d. Liberto, and G. Monroy (1983, 1985, 1987)  

also generalized specific results on Potts model and phase diagram describing this 

model [36-38]. In addition, this model has taken a great interest in the recent 

years. The researchers studied the recurrence equations and obtain some exact 

results: critical temperatures, partition function, number of phases and curves. For 

more details, see [6-8,19]. This model has many biological, physical and social 

applications, for more details see [13]. 

In this thesis, we are interested in constructing lattice models on Cayley tree 

which are described by Gibbs measure in order to determine if there is a phase 

transition or not. Phase transitions can be physically defined as a transformation 

of a thermodynamic system from one phase to another. In the study of statistical 
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physics, the phenomenon of phase transition commonly describes the transitions 

between solid, liquid, and gaseous states of matter. We cannot observe the 

mixture between these three states to approach to another phase. In fact, the 

transition can only occur from one phase to another phase. In the study of theory 

of phase transition, the description of Gibbs measures of a given Hamiltonian has 

brought us a fundamental problem in this equilibrium statistical mechanics. In 

fact, the main problem of equilibrium statistical physics is to describe all limiting 

Gibbs measures of a given Hamiltonian on a lattice, this attention because these 

distributions describe the equilibrium states of a physical system. This is known 

to be a difficult task. Mathematically, we can say that the phase transition occurs 

with non-uniqueness of Gibbs measure (more than one limiting Gibbs distribution   

exist) [31].  

In this thesis, five lattice models that are related to Ising-Vannimenus and Potts 

Models with different competing interactions on Cayley tree will be studied and 

solved. The existence of phase transition for the models will be proved by using 

one approach from the following: Markov Random Field Method (MRFM) or 

Partition Function Method (PFM). 

In both chapters 1 and 2, an introduction and some basic definitions about Gibbs 

measures, Cayley trees, Ising model and Potts model will be presented.  

In chapter 3, an Ising-Vannimenus Model with three competing interactions, NN, 

prolonged NNN and ternary-prolonged NNN interactions on Cayley tree of order 

three will be studied, and the conditions for phase transition will be determined 

by using MRFM.  

In chapter 4, an Ising-Vannimenus Model on Cayley tree of order four with one-

level NNN interaction will be studied. As the previous models, MRFM will be 

used to analyze the model and prove the existence of phase transition on the 

translation-invariant Gibbs measures. 
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In chapter 5, three Potts models will be studied. The first one is a model with   

state space on Cayley tree of order three with two competing interactions: NN 

and ternary-prolonged NNN interactions such that the PFM will be used  to prove 

the existence of phase transition.The second model is a Potts model with     

on Cayley tree of order two and with the same competing interactions in the first 

model in addition to one-level NNN interaction.  The last model is a development 

for the second model on Cayley tree of order three with one-level 3-tuple 

interactions. The PFM will be used to solve these models.  

Finally, in chapter 6, basic results and conclusions will be determined. 
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Chapter Two 

Preliminaries 

 

This Chapter consists of three sections. In section 2.1 basic definitions and 

properties about Gibbs measures and Phase Transition are presented and in 

section 2.2 definitions and remarks about Cayley trees and Competing 

interactions are explained. In section 2.3, basic definitions for Ising model, Potts 

model and Ising-Vannimenus model on Cayley tree are presented. 

2.1 Gibbs Measures and Phase Transition 

Gibbs measure is related with Markov chains. As a result, we start with Markov 

chains definition. 

Definition 2.1.1. [41]  Let   be a discrete set, finite or countably infinite. Suppose 

to each pair         there is assigned a non-negative number     such that these 

numbers satisfy the constraint ∑           ,       . Let         be a sequence 

of random variables whose range is in  .  

The sequence      is a Markov chain if           |                      

           |                
     for all   and every sequence              

for which                          .  

It is known that a Markov chain is stationary (homogeneous) if     
    does not 

depend on  , that is     
            Otherwise, it is non-stationary (non-

homogeneous or inhomogeneous). See Figure 2.1.1. 
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Figure 2.2.1. Schematic illustration of a three-state, first-order Markov chain.  

 

Definition 2.1.2. [16] A Markov chain with memory m is a process satisfying 

               |                                    |               

                 for all     . 

Definition 2.1.3. [41] Let   be a countably infinite set and       any measurable 

space. A family           of random variables which are defined on some 

probability space and take values in   is called a random field , or a spin system. 

  is called the parameter set,   is called the state space, or spin space, and      

is called the spin at state  . 

Definition 2.1.4. (Configurations) [41] Let Ω                         

     Then     Ω is called a configuration and Ω is called the set of all possible 

configurations. 

Definition 2.1.5. (The Potential and Hamiltonian) [28] Let               

   | |      . An interaction potential (or simply a potential) is a family 

             of functions where           with the following properties: 

(i) For each    ,     is a measurable function with respect to the product 

sigma algebra. 

(ii) For all        and      Ω , the series 
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     = ∑                        exists.   

  
     is called the (total) energy of   in   for  , and   

  called the 

Hamiltonian in   for  . 

Definition 2.1.6.(Gibbs Probability distribution) [41] On the space Ω
Λ  

                            we introduce a  probability distribution 

defining the probability of a configuration by             
            

       

where     is a normalizing factor (Partition function) defined by the condition 

∑                      that is      ∑         
                =       , 

where   is a constant we consider it to be 1 and   is the temperature. This 

Probability distribution is called a Gibbs probability distribution in   

corresponding to the given Hamiltonian. 

Definition 2.1.7. (Convex Set) [28] A subset   of any real valued vector space is 

called a convex set if for all         and           then         —       

 . See Figure 2.1.2. 

Definition 2.1.8. (Extreme elements) [28] An element   of a convex subset   of 

any real vector space is said to be extreme in    if                   for all      

      and        . 

Definition 2.1.9. (Extreme Limiting Gibbs Measures) [28] Let     

     
  be a 

sequence of Gibbs probability measures that corresponds to the Hamiltonian  . 

Then the set of extreme limiting Gibbs measures (extreme Gibbs states) for a 

given Hamiltonian   is a set of infinite limits    such that       

          

     for each cylinder event  .  

  

Theorem 2.1.1. [28] The set of all limiting Gibbs measures (Gibbs states or DLR 

states)      corresponding to the Hamiltonian    represents a convex set , i.e., if 

        and           then         —         . The most interesting 

elements of this convex set are its extreme Gibbs states. 
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                               Figure 2.1.2 Convex and Non convex set.   

Definition 2.1.10. (Phase Transition) [28] The phenomenon of non-uniqueness 

of  limiting Gibbs measures is interpreted as phase transition. It's known that if 

|  |     then we have phase transition. 

Definition 2.1.11. (Critical Temperature) [4] If it is possible to find an exact 

value of temperature     such that a phase transition occurs for all        , then 

    is called the critical temperature of the model. 

 It's known that phase transitions usually exist  at low temperatures. 

  2.2 Cayley Tree and Competing Interactions 

 In this section, basic definitions about Cayley tree and different types of 

competing interactions are mentioned. 

  Remark 2.2.1. [20] Most physical systems are frustrated in the sense that there 

are usually different interactions, each favor a different type of order state, such 

competition often be revealed by changing a parameter of the system (such as 

temperature, pressure or magnetic field) which serves to enhance the effect of 

particular interaction and drive the system into a different ordered state. These 

interactions are called (Competing Interactions). 

Definition 2.2.1. (Cayley Tree) [24] A Regular Cayley tree (Bethe lattice    ) of 

order      is  an infinite tree, i.e., a graph without cycles with exactly      
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edges issuing from each vertex. It is denoted as          ,such that   is the set 

of vertices of    and   is the set of edges of   . 

Definition 2.2.2. (Semi-Infinite Cayley Tree) [24] A Semi-Infinite Cayley tree 

  
   of  -th order is an infinite graph without cycles with       edges issuing 

from each vertex except       which has only   edges ,      represents the root 

vertex.  

See Figure 2.2.1.  

 
 

(a) 

                                          
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 (b) 

Figure 2.2.1. (a) Bethe lattice (Cayley tree) of order 2 (b) Semi-infinite Cayley tree of order 2 

 

Definition 2.2.3. (Single-Trunk Cayley Tree) [24] The Semi-infinite Cayley 

tree    
               is called a single-trunk Cayley tree if from vertex      a 

single edge   emanates and from any other vertex       ,          exactly 

      edges emanate. See Figure 2.2.2. 

Definition 2.2.4. (Nearest-Neighbor Vertices) [24] Two vertices         are 

called nearest-neighbors if there exists an edge       connecting them, which is 

denoted by              



 
 

11 
 

Definition 2.2.5. [24] The distance                on the Cayley tree     is the 

number of edges in the shortest (minimal) path from   to    

Definition 2.2.6. [ 1] The sphere of radius   on   is denoted by     where :           

                                                {      (       )   }  

Such that      represents the root vertex, and the vertices on    are called the     

level. For simplicity, we put | |    (      )        

 

 

 

 

 

 

Definition 2.2.7. [24] The ball of radius   on   is denoted by     where :   

   {      (       )   }, and     denote the set of edges in   .   

Definition 2.2.8. (Next-Nearest-Neighbor Vertices) [1] The two vertices 

        are called next-nearest-neighbors if           The next-nearest 

neighbor vertices       are called prolonged iff  | |  | | and denoted by 

     . 

Definition 2.2.9. (One-Level Next-Nearest-Neighbor Vertices) [2] The next-

nearest-neighbor vertices     are called one-level next-nearest neighbor if 

| |   | |   and are denoted by      ̂    

 

 
  
                                                  
 
 
 
 
     

Figure 2.2.2  Single-Trunk Cayley Tree  of order three (  
     ) 
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Definition 2.2.10. (The Set of Direct Successors of Vertex    ) [24]  if     , 

then the set of direct successors of this vertex is the set                

                       

Note that for a semi-infinite Cayley tree of order  , |    |     for any         

Definition 2.2.11. (Ternary-Prolonged Next-Nearest-Neighbor Vertices) [1]  

The triple of vertices       are called ternary-prolonged next-nearest-neighbors if 

      ,          and          for some nonnegative integer   and this  

denoted by           . 

See Figure 2.2.3. 

Definition 2.2.12. (One-Level k-Tuple Interaction) [25] For a semi-infinite  

Cayley tree   
     consider the set                        of direct successors for 

any      . Then the jointly interaction of all sites in      is called one-level k-

tuple interaction.  

 

  

   0 level                                                                                Root Vertex      

          Prolonged next-nearest-neighbor vertices                                                                                    nearest-neighbor vertices 

                                                       Ternary-prolonged NNN vertices     

               First level                                                                                               

 

             Second Level 

 

        

One-level next-nearest-neighbor vertices  

Figure 2.2.3. Nearest-neighbor, Prolonged next-nearest-neighbor, Ternary-prolonged next-nearest- 

neighbor and One-level next-nearest-neighbor vertices on semi-infinite Cayley tree of order 4. 
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Remark 2.2.2. [51] The point of difference between Cayley tree and finite 

dimensional lattices   , is that the ratio of the number of boundary vertices to the 

number of interior vertices in a large finite subset of the tree does not vanish in 

the thermodynamic limit. If       is the order of the tree  and                  

(the boundaries for the ball n), then:                                     

   
     

 
|   |

|  |
           

         

    
                

    
 
                So we conclude that the 

remote boundary expected to have a very strong influence on spins is located 

deep inside the tree, which is a rich point for phase transition. 

Definition 2.2.13. (Descartes’s Rule of Signs) [17] Let      be a polynomial all 

of whose coefficients are real numbers with the terms are arranged in order of 

decreasing powers of   and consider the equation        , then  

1)  The number of positive roots either is equal to the number of variations in 

sign of      or is less than that by an even integer. 

2) The number of negative roots either is equal to the number of variations in 

sign of       or is less than that by an even integer. 

Definition 2.2.14. ( Limit of Infinity) [48] We say               if for 

every      there exists a     such that for all    , if |   |    

then       .   

Remark 2.2.3. [39] If a function        is a continuously differentiable 

function with a fixed  point  , i.e.,       .Then the dynamical system obtained 

by iterating the function    is:                                                                                                                                  

                                                                     .   

is stable at     if |     |    and it's unstable if |     |             
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Theorem 2.2.1. [29] Let   be a positive equilibrium point for the dynamical 

system                       . .  Assume that     is continuous on an open 

interval   containing  . Then   is locally asymptotically stable if   |     |     

and unstable if  |     |   . 

Definition 2.2.15. (Invariant set) [54] A set   is called invariant under the 

dynamic operator   if           .  

 

2.3 Ising and Potts Models on Cayley Tree 

 

2.3.1 Ising Model on Cayley Tree 

 

Ising model is a model with spins that take values in the state space          

assigned to the vertices of the tree . Assume a configuration   on   is defined as a 

function  such that               and the set of all configurations 

denoted by   . Then the formal Hamiltonian for this model is  

         ∑         

        

 

where the sum is over NN vertices         [4]. 

 

From the point of view of probability theory, solving the Ising model on the 

Cayley tree  amounts to find a probability space characterized by an infinite 

number of random variables, i.e., the spins are indices in   in our case, and a 

measure  . The marginal probabilities can be calculated from an infinite set of 

given finite dimensional marginal distributions       |  . Note that, when we 

consider   , we are not dealing with a finite disconnected subgraph of our given 

cayley tree ; however the spins of    that are located on the shell   are in fact 

connected with the spins of     . The essence to be used is that, given the values 

of the spins  on        (the values of spins outside the ball   ). In  the nearest-
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neighbor case, the spins on    are conditioned only by the neighboring spins, i.e., 

the spins of the      shell. In turn, given a spin       with        , then the 

effects of all its neighbor spins that are on        can be encoded via an effective 

external field    acting only on      [42]. Thus, a finite-dimensional distribution 

of a measure   in the volume (ball)     has been defined by the following 

formula:  

 

                   
 

  
     [           ∑            

  ]                           

with the associated partition function     defined as:  

 

        ∑                   ∑       

     

   

      

                                 

  

where the spin configurations    belongs to the set of configurations     ,    
 

 
  

where     is the temperature                     is a collection of real   

functions  that define boundary condition and  

 

                                              ∑         

         

                                         

                                                

2.3.2 Potts Model on Cayley Tree [52] 

A Potts model on Cayley tree is a generalization of Ising model , i.e., the spin 

takes values in the set   =               assigned to the vertices of the tree. In 

the same way as Ising model, the set of all configurations on the tree denoted by 

     Let      , The formal Hamiltonian is: 
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                              ∑          

       

  ∑       

   

                           

               

where     is a coupling constant and          are NN vertices,   is an 

external field and      is called the  Kroneker’s delta such that 

 

                                                      {
         
            

 
           
                               

 

The finite-dimensional distribution of a probability measure   in the ball     is the 

measure: 

 

                        
 

  
     [             ∑            

  ]                                            

 

where the spin configurations    belongs to the set of configurations    ,   
 

 
  

where     is the temperature ,    is the partition function,                 

     is a collection of real numbers function  that define boundary condition and 

 

          ∑          

        

  ∑       

    

  

2.3.3 Ising-Vannimenus Model on Cayley Tree [4] 

Ising-Vannimenus model is a model investigated by J. Vannimenus which  with a 

spins take values in the state space         , which assigned to the vertices of 

the tree. The formal Hamiltonian is  

                                               ∑                   ∑                                                                    
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Which defines the Ising-Vannimenus model with two competing interactions : 

NN and Prolonged NNN (PNNN), where the sum in the first term ranges all NN 

and the sum in the second term ranges all PNNN and the spins      and      

take it's values in the set  . Note that  ,        are coupling constants 

corresponding to NN and PNNN potentials, respectively.     

In [9, 10], the authors have studied Gibbs measures with memory of length   for 

generalized Ising-Vannimenus  models on a Cayley tree of second order related to 

the Hamiltonian     by means of the vector  valued function                           

                                                                       , 

where                 and                     ). 

The finite-dimensional distribution of a probability measure   in the ball     is  

the measure 

 

                 
 

  
     [             ∑ ∑                                 

  ]                   

 

where the spin configurations    belongs to the set of configurations    ,    
 

 
  

where     is the temperature,    is the partition function such that  

 

      ∑                   ∑ ∑                                 
                   

 

Consider the subsets of the set of states for one dimensional lattices. The best 

known approximation is the so-called mean field one. It corresponds to restricting 

the variation to the set of product states (states without correlations between the 

lattice sites). The second approximation would be to take into account the nearest 

-neighbour correlations. In physics literature this is called the Bethe-Peierls 

method. For one dimensional lattices we consider increasing subsets of the set of 
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states:                 where    is the set of states taking into account 

non-trivial correlations between  -successive lattice points;    is the set of mean 

field states,    is the set of Bethe-Peierls states; the latter is extended to the so-

called Bethe lattices. All these states correspond in probability theory to so-called 

Markov chains with memory of length   [22]. 
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Chapter Three 

The First Model:  

 Gibbs Measures of an Ising-Vannimenus Model with Ternary 

Competing Interactions on Cayley Tree of Order Three 

 

In this chapter, we are going to focus on the phase Transition of Gibbs measures 

with memory of length 2 associated to Ising-Vannimenus model on a Cayley tree 

of order 3 with ternary interactions. This model was studied by H. Akin [1] where 

he analyzed the paramagnetic and ferromagnetic Gibbs measures that correspond  

to this model. In brief, H. Akin obtained the recurrence equations associated with 

that model and studied them analytically such that  the solutions are correspond to 

the invariant set                                            . He solved 

this model by using PFM considering two cases : the first case when     and 

the second case when     where        and       . In addition, he found 

numerical solutions corresponding to the same set  . 

In this chapter, we  solve the same model analytically using MRFM instead of 

PFM where the solutions are given in term of a recurrence equations that define 

on a non-translation invariant set   . The development is that we assume all the 

parameters of the model           and   do not always equal to 1 (general case). 

3.1 Model Construction  

Consider the Hamiltonian for Ising-Vannimenus  Model      with prolonged-

ternary NNN interaction (see definition 2.2.11). Therefore, the Hamiltonian is [1] 

        ∑             

       

   ∑         
     

  ∑         
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This defines the Ising-Vannimenus model with competing NN , PNNN and 

ternary PNNN (TPNNN) interactions. Where the sum in the first term ranges all 

TPNNN, and the sum in the second term ranges all the  PNNN , and the third 

term ranges the NN such that the spins      ,      and       take values in the 

set            where          . Here       and       are coupling 

constants corresponding to TPNNN, PNNN and NN potentials, respectively. In 

brief, our Hamiltonian is the same as Vannimenus one     in addition to TPNNN 

interaction on Cayley tree of order Three. 

Now let us Consider a Cayley tree  of order  ,  with        for some     and 

             where               are the direct successors of  . Denote 

                  a unite semi-ball with a center  , such that                 

Remark 3.1.1. [4]     denotes the set of all spin configurations on    and        

denotes the set of all configurations on unite semi-ball      . In our case, it's 

clear that the set        consists of 16 configurations 

                                                   (
   

           
)                                            

In table 3.1.1 below, we  denote the spin configurations belonging to        : 

Table 3.1.1 The set of possible configurations (        on Cayley tree of order 3 

  
                      

               
                      

               
                     

              
                   

           

  
                      

               
                     

               
                    

              
                  

           

  
                      

               
                      

                
                     

               
                   

          

   
                      

               
                     

               
                    

               
                  

          

 

In the same way as H. Akin (2017) [4], we take a natural definition for the 

quantities    
        

  (the real valued boundary function at the ball      ) as         
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. In this thesis, we  assume the following definition for the vector valued function 

            which defined by 

                                              

                                                       (                                                 )              

Where                            ,       ,              and 

                 represents  the order of the spins in the ball       , we use the 

function                         to describe the  Gibbs measure of any 

configuration        
                

   that belongs to       .   

The finite-dimensional Gibbs probability measures (distributions) on the 

configuration space      =                           that corresponds to 

the Hamiltonian (9) at inverse temperature     
 

 
 is defined by the formula [4] 

   
         

 

  
              ∑ ∑                 

                 

                                       

   with the corresponding partition function defined by 

    ∑     

      

           ∑ ∑                 

                 

                               

Now, we obtain a new set of Gibbs measures by constructing of an infinite 

volume distribution (limiting Gibbs measure) with given finite-dimensional 

distributions. To start with this, consider the following definition  

Definition3.1.1. [3, 4, 5] A finite dimensional measures (probability distributions)   

  
    are compatible (consistent) if for all       and                   

                          ∑        

     

                                              

where        is the concatenation of the configurations.  
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It is known that if this condition is satisfied , then there exists a unique limiting 

Gibbs measure    Such that      

                        (     |  
    )    

             for all          ,     .   

Remark 3.1.1.[2] The limiting Gibbs distribution    satisfying the compatibility 

condition (14) is called splitting Gibbs measure, and the icon   denotes that this 

measure  corresponds to the boundary function     

Remark 3.1.2.[2] The splitting Gibbs measure     that corresponds for the 

Hamiltonian (9) and the boundary function         is called  a splitting Gibbs 

measure with memory of length 2.   

Remark 3.1.3.[2, 3, 4] The Method of finding a limiting measure     that satisfied 

consistency conditions in definition 3.1.1 is called Markov Random field method 

making use of the Kolmogorov consistency conditions.  

More exactly, in the next step we find the set of limiting Gibbs measures    for a 

sequence of finite dimensional  compatible measures    
   

      in the same 

way as [4]. The Hamiltonian (interaction energy)  on the set of vertices    with 

the inner configuration               and with the boundary condition    

     is defined by : 

  

                         ∑ ∑ ∑             

                  

  

   ∑ ∑           

              

    ∑ ∑          
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                                ∑             

                  

    ∑ ∑ ∑             

                  

      

   ∑         
     

        

   ∑ ∑         

              

  ∑         

 

 
     
         

  ∑ ∑  
       

        

      

                                                                              

 

Thus, the compatibility  condition (14)  satisfied for the sequence of finite-

dimensional probability measures    
        (12) for our model if    

     ∑   
   

     

     

      
     

       

Then, 

   ∑                    
     

 ∑ ∑ ∑ ∑                                                        

                                

 

                                                                                                                 

                                                                                                                    

                      ∑ ∑                                                

                 

           

 

where    
    

  
. Using The Hamiltonian in     , we obtain:  
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    ∑                      ∑ ∑ ∑             
      

            
     

     ∑ ∑           
        

      

    ∑ ∑         
             

 ∑ ∑ ∑ ∑                                                        

                               

 

                                                                                                                                                      

                                                                                                                                                     

                         ∑ ∑                                                  

                

   

 

                ∑          ∑ ∑ ∑             
      

            
     

     ∑ ∑           
        

      

    ∑ ∑         
             

 ∑ ∑ ∑ ∑                                                        

                                  

 

                                                                                                                                                      

                                                                                                                                                     

                       ∑ ∑                                                  

                

   

 

For all        . 

Now after simplifying we get the following formula  

     ∏ ∏                                                  

                  

 

      ∏ ∏ ∏ ∏ ∏ ∑  [ (         )]

 (  )                                                             
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                 Where  

                      (         )                                                          

                                                                                                               

                                                                                               
   

                     

      [

  
    (                  )           (                      )   

    (                  )
]                      

             [    (    (∑      
 

   
)      (∑      

 

   
)      (∑      

 

   
))] 

                                              *    ∑             
 
         )   

Next step, we rewrite equation      for all possible values of             

            . For doing this, we assume     ,            and       are fixed 

such that        and           . Then for each case we consider all 

possible values of configurations for the set of boundaries 

{  ,   ,      ,                . 

To simplify, assume: 

                                                       

                                                          

where                                 (See Figure 3.1.1). 

Thus: 

                    

   ∑                                 (                          ) 

           

 

             (                                  )                          

                                                                                                                               (18) 



 
 

26 
 

 

 

As H. Akin [3, 4]  we define the real vector-valued function h (11) in the 

following way: 

Let                                        such that for                                                                                               

             
            

                                          (19)                                                                                                                                    

            
             

             
                                                             (20) 

            
             

             
                                                             (21) 

            
                                                                                                        (22) 

            
                                                                                                        (23)              

             
              

              
                                                         (24)                                                                                                                                  

             
              

              
                                                         (25) 

             
                                                                                                        (26) 

 

 

 

                                                                            i 
                  level 0 
 
 
 level 1                                 j                         k                       g 
 
 
                 level 2                                
                                        u             v       p   r           s        q     o          n        m 

Figure 3.1.1. The set of Configurations on semi-finite Cayley tree of order three with 

2 levels. 
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3.2 Construction of Recurrence Equations  

In this section, we construct the recurrence equations that give an explicit formula 

for Gibbs measures with memory of length two that corresponds to the 

Hamiltonian (9) and satisfies consistency conditions (14) by means of equation 

(18). Assume that        ,           and        . By using the equations 

(19)-(26) and for simplifying, we can assume new variables 

                
 

       
 
   

     for          and        
 

       
 
   

 for          .  

Where             and              .  

To simplify, let     . Then  From (18), through direct enumeration, we get the 

following eight equations: 

First equation : We consider the case corresponding to         (See Figure 3.2.1). 

In this case,           . Then from (18),                                     

  
 

         
   

 

 
 

        
      

 
   (         

       

  

  
    

     
 

  

      
)

 

                              

Such that         
 

        
   

,      
 

         
     

 
         

     
  

         
       

          
 

         
     

 
         

     
 

         
               

 
        

    

 
         .  

 

 

 

 

 

                                                      x      +                                       
                                                                          
                                y                    z                   l  
                                    +                    +      +                    
                        

 Figure 3.2.1. The Semi-ball       with    
    configuration,  the 

 Boundary Function   that corresponds for this model is   (19). 
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Similarly, we find  the  other   equations : 

  
     

     (         
       

  
  

    

     
 

  

      
)
 

.
  

      
  

      

   
 

      

    
 

        

  /                   

  
      (         

       

  
  

    

     
 

  

      
).

  

      
  

      

   
 

      

    
 

        

  /

 

                          

   
         .

  

      
  

      

   
 

      

    
 

        

  /

 

                                                                                              

   
         .

      

    
 

      

      
 

           

   
 

     

    
 /

 

                                                                                              

  
    .

      

    
 

      

      
 

           

   
 

     

    
/

 

.
 

         
 

      

   
 

          

    
 

       

  /                       

    
          .

      

    
 

      

      
 

           

   
 

     

    
/.

 

         
 

      

   
 

          

    
 

       

  /

 

         

   
    .

 

         
 

      

   
 

          

    
 

       

  
 /

 

                                                                                             

 

From the system of equations (28-34), we conclude that: 

 

                  
     

    
  

 

     
   

  

 
                 

                                    
      

  
 

    
   

  

 
                                

  
     

   
  
 

    
  

 
  

   
          

   
  
 

    
  

 
   

 

Therefore, we can reduce the system of equations (28-34) to 4 equations with 4 

independent variables:    
    

    
  and   

 .  

From the relations (35), we conclude the following remark. 
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Remark 3. 2.1. The compatibility condition      is satisfied  if the vector valued 

boundary function                                        has the following 

form: 

   (   
 

 
 

   

 
 
 

 
 

   

 
     

 

 
 

   

 
 
 

 
 

   

 
   )               

Proof.  Assume      and       such that      .Take the first equation of 

the system (35) ,      
     

    
  

 

     
   

  

 
 
, then from (19, 20, 22),   

               
   
    

  

 
                     

    

 
 

  

 
                 

 

 
 

   

 
  

In the same way, we can get the other component of the vector  . 

If we assume      
 ,          . Then, the system of equations (28-34) is 

reduced to the following four equations based on the relations  (35) : 

     
    √  

  
              

 

        
 

                                                                       

   
       √  

  
              

 

        
 

                                                                   

   
       √  

  
              

 

        
 

                                                                   

  
     √  

   
              

 

        
 

                                                                         

 

Proof. 

From (27),   
     

      (        
  

       

  
 

  
    

 

     
 

  
 

      )
 

.Then from 

(35) we have 
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      .        

  
          

 

  
  

    

        
 
 

  
 

      
/

 

 

                 
   √  

   (        
  

          
 

  
  

    

        
  

  
 

      )        

Which simplified to equation (36). In the same way we can prove the equations 

(37-39).  

 

3.3 Translation-Invariant Gibbs Measures 

In this section, we describe a subset from the set of translation-invariant Gibbs 

measures associated with our model. Consider the following definition: 

Definition 3.3.1. [4] A function     {           
                          } is 

considered as translation-invariant one if           
              

     for all 

         and                 , and a  translation-invariant Gibbs measure is 

defined as a measure,   , corresponding to a translation-invariant function  .  

So the  Gibbs measure for our model is translation invariant if            for all 

             . 

Now assume                         . 

The analysis and solving the system of equations (36)-(39) is rather tricky. Below 

we consider a case in which this system of equations is solvable for the set:  

                                                                .  

Next step, we find Gibbs measures for the previous considered case. To do this, we 

will introduce some notations.  

Define the operator   by 
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with       =                ,                     ,                     , 

and    
                 .  

Remark 3.3.1.[3, 4, 5] The fixed points of the equation          describe the 

translation-invariant Gibbs measures of the Ising model corresponding to the 

Hamiltonian    , where                .  

It's clear that the set    is not invariant with respect to the operator  , i.e., 

      need not be a subset of    , see definition 2.2.15. As a result, we  define 

the operator   on this set, which is used to describe the Gibbs distributions. The 

problem of finding an invariant set with respect to the operator   and with the 

parameters      and   not equal to one  is left as interesting problem. 

3.4 Phase Transitions  

Remark 3.4.1. From definition 2.1.10 and definition 3.1.1,  we can conclude that 

if there are more than one positive fixed point of the operator  .Then there is 

more than one Gibbs measure corresponding to these positive fixed points. In 

essence, a phase transition occurs for the Ising-Vannimenus model with 

Hamiltonian (9) if the system of equations ((36)–(39)) has more than one 

solution. The number of the solutions of these equations  depends on the coupling 

constants         and the inverse temperature    
 

 
  . 

Now we  start to analyze the system of equations ((36)–(39)) in order to determine 

the number of positive fixed point of it. 

  We restrict the operator   (40) to the set   , i.e.,  assume                   

Then, we reduce the nonlinear dynamical system of equations ((36)-(39)) to 

    one nonlinear dynamical equation as the following: 



 
 

32 
 

 Divide equation (36) by (37), we get the following equation: 

 

                                                
              

    
  

              
   

 
                                    

 

Divide equation (38) by (39), we get the following equation: 

                                         
 

     
 

              
    

  

              
   

 
                                      

 

Then from (41) and (42), we get  

                                    

                               
               

                
  

       
            

               
 
                         

Assume               .Then, the equation (43)  is reduced to 

          
             (        )

 
 

                         
                                                                                          

Then we define the following nonlinear dynamical function  

                                           
(         )

 
 (        )

 
 

                         
                           (44)                                     

In order to investigate the phase transition of the model, we analyze the positive 

fixed points of the rational function   with real coefficients as a dynamical 

system such that the number of phases for our model under the assumptions on 

the operator    equal to the number of positive roots for this function (44). We 

analyze this function in two cases : 
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Case1:  Assume      , then the function   is reduced to  

                                                             
(       )

 
  

           
                                       (45) 

By using the same method in [4, 5], we start to analyze the fixed points for this 

function. The first derivative for      is  

                                             
                                  

            
    

 

                          iff                                

The roots for this equation are   {
     

    
 √

         

    
  

     

    
 √

         

    
 } 

The condition on this roots to be real  is             . The solution for the 

latest inequality is          or             by [57]. 

From the sign of the quadratic  equation ,  the inequality               

                is satisfied iff 

  
  

     

    
 √

         

    
   

     

    
 √

         

    
   

  

Since    . Then         must be greater than zero and this is satisfied if 

             

As a result ,  we conclude that      is increasing (       ) iff         , 

              and  

  
     

    
 √

         

    
   

     

    
 √
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If one of these conditions is violated , then   is decreasing and there can only  be  

one fixed point of       see Figure 3.4.1. Thus, we restrict ourselves to the case in 

which the previous conditions are satisfied. 

 

         y                                                              
                                                                     
 
 
                                           Fixed point 

                                         Decreasing function 

 
                                                                           x 

Figure 3.4.1 The uniqueness of fixed point for a 

decreasing function. 

           

Remark 3.4.2. In this thesis we use Wolfarm Mathematica [57] to simplify the 

analysis process of equations and polynomials. 

The second derivative for the function   is 

 

      

 
 (                                                                     )

            
 

By Mathematica [57],  we conclude that if           , then        has two 

positive roots say          such that           (concave up)          

               and concave down otherwise. 

Then, from the concavity information we conclude that There is at most   

positive roots for        i.e., the number of phases for the model under the 

operator   (40) that defined  on the set    do not exceed 4. See Figure 3.4.2.      
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To determine accurately the maximum possible number of positive roots for 

equation (45), we apply Descartes' Rule of signs, see definition 2.2.13. It's clear 

that the equation        (45) could be reduced to the following polynomial : 

                                                              

 Let                 and             . Then, if     and    , 

then there are 3 sign changes of      and according to Descartes' Rule it's 

possible to find 3 positive roots for     .  Now     and      iff   

                                   √      
√ 
 

 
    

 

√ 
                             

        Then, we get the following remark: 

Remark 3.4.3. The maximum possible number of positive fixed points for 

equation (45) are 3 according to Descartes’s rule of signs, and this case is 

possible under the conditions in (46).  

Note that the conditions in (46) can be reduced to  

 (     )    (√  )            
√ 
 

     
     

     

√ 
  

       Y                                                                          
 
 
                                                                                     
 
 
                                              
 
                                                                             
 x 

Figure.3.4.2.The maximum possible number of fixed 

points for an increaisng function      that changes it’s 

concavity from up to down to up is 4.               
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(     )

  (√  )
        

   

(     )
 

   (√  )

   
   

  (√  )  
(    )

 

 

So, if at least one from these conditions is violated. Then there is only one 

translation-invariant Gibbs measure corresponds to the unique positive root for 

the polynomial      according to Descartes rule, i.e., there is no phase transition. 

Although the conditions in      guarantee the possibility of existence  of phase 

transition, but to give an accurate result we use an analytical strategy as follows: 

 According to Preston [50, Proposition 10.7], there can be more than one solution 

for        if and only if there is more than  one  solution to                 , 

which is reduced to the following equation:                                                                                                                                        

              
                                    

          
                     

To find the positive roots for this equation, consider 

                                                            , 

Then, the roots for this quadratic equation are  

   
     

     
 

 

 
√

           

    
     

     

     
 

 

 
√

           

    
     

   and     are positive roots for (47) iff                and         , 

these conditions satisfied iff           and     by using [57]. Note that 

under the previous conditions, it's clear that    
      and   

    , i.e., the 

positive roots    and     for equation (47) belongs to the interval    
     

    in 

which the function   in equation (45) increasing. 

As a result, in the same way as Preston [50], we conclude the following 

proposition  
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Proposition 3.4.1. The equation 

                                                 
(         )

 
  

              
                                     (48)       

 with                     and      has  one positive  solution  if 

          . If          , then there exists                             

such that equation (48) has  at least two positive roots if             

          where                    are the first derivative of the positive roots 

   and    of equation (47), i.e.,  

                        :   

           

    

                    
 
 .

     

     √           

    /   

          √           

            
 
 .

     

     √           

    /   

         

                    

     

                    
 
 .

     

     √           

    /   

           √           

            
 
 .

     

     √           

    /   

 

 

Proof. If           , then the function   in equation (45) is a decreasing 

function and there is only one fixed point in this case [4], see Figure 3.4.1. Now 

for           , i.e., 
  

 
          , then the function      is increasing and 

       changes it's concavity from up to down to up as we have explained in the 

previous steps. Then, from Preston [Proposition 7.10, 50], there is more than one 

positive roots for equation (48) if 
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                                                        and                                                   (49)  

where     nd    are the positive roots for the equation              which is 

reduced to the rational function (47). From the previous notation we conclude that 

(49) means  

                                                                and                                                    (50)   

It's clear that   is a continuous function             and               . 

Let    , from definition 2.2.14         such that if  | |                  . 

Let         such that               and         , then it's clear that  

 (      . As a result, the function   will intersect with the identity function 

while moving from    to   , and the intersection will be  recurred again  from    

to   , see Figure 3.4.3.The proof is readily completed.  

Theorem 3.4.1. Let      and      be the PNNN and TPNNN coupling 

constants, respectively. Then, if       and        where      
  

            
 , the 

Ising-Vannimenus model that corresponds to Hamiltonian (9) exhibits a phase 

transition. 

Proof.  

From proposition 3.4.1, there is more than one fixed point for the operator   that 

is defined on the set    ( The phase transition exists ) if           . Since 

                       
  

 
             .Then, the proof is readily 

completed. 
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Now, we give a numerical example for the existence of phase transition according 

to proposition 3.4.1 and Theorem 3.4.1. 

Example 3.4.1 

Let      then            , thus       is increasing and         changes it's 

concavity from up to down to up. Now according to proposition 3.4.1, phase 

transition exists if 

                       

By substituting     in this equation ,  we get 

                                   
         (    √    )

                  √    
   

         (   √    )

                 √    
   

Then phase transition exists if    

                                                                         

Let       , then there are more than one positive solution for equation (48), the 

solutions are  

                                                 and                                        

       
    y 

                                                                     
                                            `                                     
 
              
                                                                  
                  
 
              
                                                                            x 

    Figure 3.4.3. The existence of multiple fixed  points for a 

function   if          ,  
          and          . 
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As a result, we conclude that there are 3 phases for our model, i.e., Phase 

transition exists. See Figure 3.4.4. 

 

 
Figure 3.4.4.  The existence of 3 positive fixed points 

of the function      for           and     . 

                                 

Remark 3.4.4.[5, 40] The stable fixed points (roots) of equation (48) describe 

extreme Gibbs distributions.         

From Remark 2.2.3 and Theorem 2.2.1, we conclude that a fixed point of       

given in equation (45) is stable if the absolute value of its derivative less than 

one. From (60), we have |            |             (stable), and  

|             |                   (unstable) and  |              |   

              (stable). Thus, we have two extreme translation-invariant Gibbs 

measures corresponding to the stable fixed points . As  a result, there is a critical 

temperature          such that for         the system of equations ((36)-(39)) 

has 3 positive solutions of boundary vectors :   
    

   and    
 
. We denote the 

translation-invariant Gibbs measures corresponding to the roots   
  

  
  and    

      respectively by   
 ,   

  and   
  respectively. 

Case2:  Assume    , then the function   defined by equation (44) remains the 

same:  
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(         )

 
 (        )

 
 

                         
                 

In the same way as case 1,  we  find the positive fixed points for     ,  i.e., we 

are interested in  finding the positive solutions for the equation  

   
                         

                       
    

    Since    , the previous  equation can be written as       

                             √
                         

                       
                                          (61) 

As a result, consider the new function g :       such that 

                              √
                         

                       
                                      (62) 

Then,  

     

 
                                                                     

                       √
                       

                      

 

It's clear that         (increasing)  iff     . So we restrict our self to the case 

when    , that's to say  
  

 
   and hence     . 

Again from Preston [50, Proposition 10.7] ,              is reduced to the 

following equation : 

                     (                          )
 
(                   

                                             

                             )                                                     
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Then, from Mathematica Programming [57] there are two positive roots for the 

previous equation iff one of the following cases is satisfied: 

1)  For                   or            . Then  

a) If 
                ⁄

             ⁄    
 

 
√  

  
    

√         

  
. Then, there are 4 

positive roots for equation (63) : 

     
 

       
                √       (                           )

 √       √ 
 

      
                           

  √       (                           )

    √       (                           )            

 √       (                           )        

 √                                           

            
 

       
                √       (                           )  

 √       √ 
 

      
                           

  √       (                           )

    √       (                           )            

 √       (                           )        

 √                                                                                                      

     
 

       
                √       (                           )

 √       √ 
 

      
                           

  √       (                           )

    √       (                           )              

 √                                           

 √                                      
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                √       (                           )

 √       √ 
 

      
                           

  √       (                           )

    √       (                           )              

 √                                           

 √                                           

 

b) If  
 

 
√  

  
    

√         

  
  , then there are two positive roots for (63) , 

which are     and    above   

 

 

2)  If                      , then there is two positive roots    and    for 

equation      if    
 

 
√  

  
    

√         

  
 . 

 

We conclude the following proposition: 

Proposition 3.4.2. The equation 

                                                                  √
                         

                       
                           (64)       

 with               and       has one positive solution if    . If  

     , then  

a) If                              , and if    
                ⁄

             ⁄  , 

then there exists                                such that equation (64) 

has  at least two positive roots if                       where 

                        are  
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   Where     
         are any  positive solutions for the equation  

 

                          (                             

                                                      

               )                    

b)  If                        , and    
 

 
√  

  
    

√         

  
, then 

we get the same results that we have mentioned in  (a).   

Theorem 3.4.2. If proposition 3.4.2 is satisfied, then Ising-Vannimenus Model that 

corresponds to Hamiltonian (9) exhibits a phase transition, and at least two extreme 

Gibbs measures exists. 

We give a numerical example for the existence of phase transition according to 

proposition 3.4.2 and Theorem 3.4.2. 

Example 3.4.2 

Let                               Then, according to proposition 3.4.2 

(b), we conclude that  if            , the  Phase transition exists if  

                                                                                

 

Let    , to find               and                we need to get   
   and    

  

(the positive roots of polynomial (63)), which are  (by Mathematica programming 

help [57] )  

  
  

         

  
 

  
  

          

  
 



 
 

45 
 

As a result, phase transition exists if                    
          

   

              

Now for    ,    (
         

  )     iff                 iff  

                                                                 

In the same way,   (
          

  )    iff                 iff  

                                                                

We can conclude that for        and    , phase transition exists if  

                                                                            (65) 

Let      , then the positive solutions for equation (64) are 

                                                      and                             

corresponding to 3 translations-invariant Gibbs measures, two of them are 

extreme one's. See Figure 3.4.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.5. The existence of 3 positive fixed points of the 

function      (62) for            and        . 
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In the previous example, let take                                , i.e.  

outside the phase transition interval (65). Then the positive root for equation 

(64) is unique which is              . As a result, no phase transition exists 

for this case. See Figure 3.4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4.6. The Existence  of unique fixed point for      (62) 

when            and       . 
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Chapter Four 

The Second Model:  

Gibbs Measures of an Ising-Vannimenus Model with One-Level 

Competing Interactions on Cayley tree of Order Four 

 

In this chapter, we focus on the translation-invariant Gibbs measures with 

memory of length 2 associated to Ising-Vannimenus model on a Cayley tree of 

order four with one-level interactions. We use MRF method to achieve the 

following objectives: constructing the recurrence equations corresponding to a 

generalized NNN Ising-Vannimenus model; formulating the problem in terms of 

nonlinear recursion relations along the branches of a Cayley tree of order four; 

fulfilling the Kolmogorov consistency condition; describing the translation-

invariant Gibbs measures for the model; showing that some measures are extreme 

Gibbs distributions and trying to give some numerical examples. Our model is a 

generalization for H. Akin work [3] for Cayley tree of order four by adding one 

level interaction. We study this model for the first time and attempt to determine 

when phase transition occurs. 

 

4.1 Model Construction 

Consider the Hamiltonian for Ising-Vannimenus  Model      with one-level next 

nearest neighbor interaction (see definition 2.2.8). Therefore, the Hamiltonian is  

 

                ∑         
     ̂

   ∑         
     

   ∑                        
     

 

This defines the Ising-Vannimenus model with competing NN , PNNN and One -

Level NNN (OLNNN), where the sum in the first term ranges all OLNNN, and 

the sum in the second term ranges all the  PNNN, and the third term ranges the 
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NN such that the spins      and      take values in the set  . Here,     

   and       are coupling constants corresponding to OLNNN,  PNNN  and NN 

potentials, respectively. In brief, our Hamiltonian is the same as Vannimenus one 

(6) in addition to OL interaction on Cayley tree of order four. 

In the same way as first model, let us consider a Cayley tree  of order  . Now  let 

      for some     and                 where                are the 

direct successors of  . Denote                     a unite semi-ball with a 

center  , such that                   

Remark 4.1.1. Denote the set of all configurations on unite semi-ball       on 

Cayley tree of order four by 

        (
 

            
)                  

It's clear that the set        consists of 32 possible configurations. 

In table 4.1.1 below, we  denote the spin configurations belonging to       : 

 Table 4.1.1 The set of possible configurations (        on cayley tree of order 4 
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Now let us take a natural definition for the real valued boundary function 

quantities    
           

  as        . Consider the following definition for the vector 

valued function               defined by 

                            

              (                                                        )                        

Where                                ,                           and 

               denotes the vertices for the semi ball      . Finally, we use the 

function                             to describe the Gibbs measure of any 

configuration       
                     

   that belongs to       .   

In this section, we present the general structure of Gibbs measures with a memory 

of length two on the Cayley tree of order four. 

The finite-dimensional Gibbs probability measures (distributions) on the 

configuration space      =                           at inverse temperature 

    
 

 
  is defined by the formula 

             
        

 

  
              ∑ ∑                     

                   

                                    

with the corresponding partition function defined by 
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          ∑               ∑ ∑                     

                   

                            

      

           

  

Now we look for a new set of translation-invariant Gibbs measures and we 

consider a construction of an infinite volume distribution with given finite-

dimensional distributions.  

First step, we try to find the set of limiting Gibbs measures    for a sequence of 

finite-dimensional  compatible measures, i.e., we explain the splitting Gibbs 

measures    with memory of length 2 corresponding to  the Hamiltonian of our 

model (66) and the function   (67). See definition 3.1.1 and the condition (14). 

We define the Hamiltonian (interaction energy)  on   with the inner configuration 

              and the boundary condition         as follows 

                ∑         
          

     ̂      
 

    ∑         
      

     ̂     

    

   ∑         
            

    ∑ ∑         
              

 

  ∑         
            

   ∑ ∑         
             

 

          

                             ∑         
     ̂   

    ∑ ∑           
              

      

  ∑ ∑                     
             

                                                  

 

Thus , the compatibility  condition (14) is satisfied if for the sequence of finite 

dimensional probability measures    
        (68) for our model if    

∑   
   

     

     

      
     

       



 
 

51 
 

Then, we get 

 
 

  
 ∑                    

     

 ∑ ∑ ∑ ∑ ∑                                                                  

                                         

 

                                                                                                            

                                                                   

                                                                                                         

 
 

    

                

 ∑ ∑                                                          
             

 

      

 

 

Let     
    

  
. From (70) This provides that  

    ∑                       ∑         
      

     ̂     

     ∑ ∑           
        

      
     

    ∑ ∑         
             

 ∑ ∑ ∑ ∑ ∑                                                                  

                                         

 

                                                                                            

                                                                    

                                                                                                    

                    ∑ ∑                                                           
            

      

  

For all          . Now after simplifying we get 
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∏ ∏                                                           

                    

      

               ∏ ∏ ∏ ∏ ∏ ∏ ∑  
* (          )+

 (  )                                                                            

         

Where  

 (          )                                                                   

                                                                   

                                                                    

                                                                    
   

 

     [     (                         )         (       

                   )        (                   

       )                                       ]  

        ( ∏      
 
     ∏      

 
     ∏      

 
     ∏      

 
   )  

           ∑              
 
                                          

 Next, let fix                ,          and         by rewriting (71) for 

all values of                            . In the same way as the first 

model, we assume                                              

                                                                

                                     and                       

                 .Where                                            

  . Then,  (71) is reduced to 

                                 ∑                                           

         

 

                                                                                                                                                          

                      (                                                                                   ) 
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See Figure 4.1.1. 

 

 
                                                          i 
 
 
                         j                        l                     k                    g 
     
 
 
 

  u       v        f      a    r      s    q    p   o    n      m    h   b      c      d    e   

Figure 4.1.1. The set of Configurations on semi-infinite Cayley tree of order 4 with 

 2 levels. 
 

Now let  

                       
                                                                                                  (73) 

             
              

              
              

                              (74)                                                                

             
              

              
              

    

           
               

                                                                                                      (75)                                                                                                                       

              
               

               
               

                           (76)                                                                    

              
                                                                                                             (77)                                                                                                                                              

              
                                                                                                             (78)                                                                                                                                              

              
               

               
               

                           (79)                                                              
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                                                                                                                        (80) 

              
               

               
               

                           (81)                                                               

               
                                                                                                           (82)                                                                                                                                             

Therefore, the real vector valued function given in (67) can be redefined as 

                                                                                (83)                                                                                           

  

4.2 Basic Equations  

Now we  construct the recurrence equations that give explicit formula for Gibbs 

measures with memory of length two which satisfies consistency conditions (14) 

by means of equation (72). Assume that         ,           and         . As 

we have done before, by using the equations (73)-(83) we can assume that 

               
 

       
 
   

   for          and         
 

       
 
   

 for           

 

Where              and               . From (72), through direct 

enumeration, we get the following 10 equations: 

Let    
    

 
         

        where    is defined on  the semi-ball         

  .Then from (72) we get  that : 
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Which is simplified (by [57]) to  

           
    .         

        

  
 

 

  
    

 

         
 

    

    
/

 

                                                                            

 

In the same way, we get the following recurrence equations  

             
       (         

        

  
 

 

      
 

         
 

    

    )
 

(
    

    
 

    

     
 

       
    

           
    

     
)                    

 

     
     ( 

        
        

  
 

 

      
 

         
 

    

    )
 

  (
    

    
 

    

     
 

       
    

      
    

     
)
 

                

 

     
       (         

        

  
 

 

  
    

 

         
 

    

    
)
 

(
    

    
 

    

  
   

 

     
  

      

  
  

    

     
)
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     .

    

    
 

    

  
   

 

    
 
  

    

  
    

    

     
/

 

                                                                                                       

 

   
        . 

    

  
    

    

    
 

 

  
   

    

    
 

    

  
  /

 

                                                                                

 

   
      ( 

    

      
    

    
 

 

     
    

    
 

    

    )
 

  (
  

      
 

  

       
 

    
          

      

   
)         

 

     
       ( 

    

      
    

    
 

 

     
    

    
 

    

    )
 

  (
  

      
 

  

       
 

    
          

      

   
)
 

                

 

    
    ( 

    

      
    

    
 

   

   
    

    
 

      

  ) (
  

      
 

    

     
 

    
          

      

   
)
 

                         

 

     
       .

  

      
 

  

    
   

 

    
          

      

   
/

 

                                                                   

 

   From the system of equations (84-93), we conclude that : 
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Therefore, we can only select the four independent real  variables 

  
     

     
  and     

    Now the consistency (compatibility)  condition satisfied if 

the following remark satisfied: 

Remark 4.2.1. If the vector  valued function   Given in (83) has the following   

form, 

        (    (
       

 
)  

     

 
   (

      

 
)         (

        

 
)  

     

 
   (

       

 
)   )  

   Then the consistency condition is satisfied ,  where                           

Proof. 

From (83), Let                   and         where                

Then from (94) ,      
        

  
 

      
  

 

                                
       

  

        
       

 
                           (

       

 
)  

 Now    
      

  
 

      
  

 

 .  Then,         
      

  ,   i.e.,     
     

 
   

In the same way as  the previous  cases, we can  get  the other coordinates for  .   

If we assume   
    , then the system of equations (84-93) is reduced to    

     

   
  √  

 .
      

 

    
         

             
  

 

  
   

   
  

  

    
   

 /                   

              
   √  

  . 
 

    
    

 
 

    

    
 
 

    

     
 
 

    

    
    

 
    

       
 
 /                                   

            
        √  

 .
        

 

  
 

      
   

  
 

    

  
  

  
   

   
 

  
 

    

  
  

 /                                      
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        √  

  .
 

    
    

 
 

  

      
 
 

      

   
 

 
 

      
    

 
      

     
 
/                 

                                                 

4.3 Translation-Invariant Gibbs Measures  

In this section, we describe the set of translation-invariant Gibbs measures 

associated with our  model that corresponds to Hamiltonian     . Then, from 

definition 3.3.1,  the vector field function 

                                                           
                         

is considered as translation-invariant one if           
              

    for all 

         and                 , and the  translation-invariant Gibbs measures 

are the measures that corresponds to a translation-invariant function  .  

 As a result, the Gibbs measure for our model is translation invariant if 

          for all                . 

   Assume                                  . 

Since the analysis and solving  the system of equations (95)-(98) is rather tricky. 

Then, we define a set      in which this system of equations is solvable , the set 

is: 

                ,                          
  

  
   

 

   
    -             (99)  

Then, we want to find Gibbs measures for the previous considered case. To do 

this, we introduce the operator 

                                               
       

       

Where                         
,     
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                   ,                          

                                           .   

As we know, The fixed points of the equation          describe the translation-

invariant Gibbs measures of the Ising-Vannimenus model corresponding to the 

Hamiltonian (66). It's clear that the set    is invariant with respect to the operator 

 , i.e.,           . As a result, we consider this invariant subset for this 

operator, which will be used to describe the Gibbs distributions.  

4.4 Phase Transitions 

From Remark 3.4.1,  we know that if there is more than one positive fixed point 

of the operator  . Then, there exist more than one Gibbs measure corresponding 

to these positive fixed points. In essence, a phase transition occurs for Ising-

Vannimenus model with Hamiltonian (66) if the system of equations ((95)–(98)) 

has more than one solution. The number of the solutions of these equations  

depends on the coupling constants and the temperature  . 

Note that if it is possible to find an exact value of temperature     such that a 

phase transition occurs for all        , then     is called the critical temperature 

of the model .See definition 2.1.11.  

Now we start to analyze the system of equations (95–98) in order to determine the 

number of positive fixed point for that system. 

  We restrict the operator   to the  set   . , i.e.,         
 

  
   and      

 

   
 Assume 

Then, we reduce the nonlinear dynamical of equations (95–98) to the following 

equation :       
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Assume  
  

  
         Then  we define the following function  

                 
                                          

                                           
                   

In order to investigate the phase transition of the model, we analyze the positive 

fixed points of the rational function   with real coefficients as a dynamical 

system. We start the analysis with Mathematica Programming help [57].  

For simplicity, assume                   . Then, The function   is 

reduced to  

     
                                                      

                                                       
          

The fixed points of       are the roots of equation       , the later could be 

reduced to the function  

                  (                    )   (                    )   

(                     )   (                  )                                      

We use Descartes’ Rule of Signs ( see definition 2.2.13) to find the possible 

number of  positive  zeroes for the polynomial     . Thus, we determine the 

number of positive and negative solutions to the equation (102) by the  following 

steps :  

To apply Descarts' Rule,  as mentioned in definition 2.2.13, we find the negative 

case for the polynomial, i.e.        which is reduced to  

                    (                    )   (                    )  

 (                    )   (                  )                    

Let     (                    ),    (                    ) ,   
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      (                    )  and   (                  ). Then : 

 

     iff           (           )      iff          
 

   
 

     iff                             iff           
 

    
 

    iff                               iff           
    

 
  

     iff                                 iff               

Consider the following table which counts the number of sign changes for the 

positive and negative case, respectively. 

  Table 4.4.1 Possible number of positive and negative roots for      depending on Descartes' Rule  

 

   B C D E Positive Roots  Negative Roots 
 

+ + + + 1 0,2,4 
+ + + - 1 0,2,4 

+ + - +   Impossible    
+ + - -                1                                    0,2,4  

+ - - +  Impossible 
+ - + - 1, 3 0,2 

+ - + + 1,3 0,2 

+ - - - 1 0,2,4 
- + + + 1, 3 0,2 

-  + + -   Impossible                     
- + - +                           Impossible       

- + - -                           Impossible  

- - - + 1, 3 0,2 
-  - + - 1 ,3 0,2 

- - + + 1 , 3 0,2 

- - - - 1 0,2,4 



 
 

62 
 

Since we are interested in the existence of more than one positive root  for 

    .Then, we consider these cases from Table 4.4.1 and search for the 

conditions on       and    such that these cases are satisfied. 

To clarify, consider the following table  

 

Table 4.4.2  The conditions under which there is possibly 3 positive roots for      ,      

Case 
number 

B C D E Number of   
positive roots 

conditions 

 
1 

 
+ 

 
- 

 
  + 

 
- 

 
1,3 

-                  and  
 

           
√     

   

-                 and  
     

          √
 

  

  
 

 

       

 
 

2 

 
 

+ 

 
 
- 

 
 

+ 

 
 

+ 

 
 

1,3 

-           <               and  
 

             

√
 

  

  
 

 

       

-               and  
√     
 

       √
 

  

  
 

 

   

 
3 

 
- 

 
+ 

 
+ 

 
+ 

       
          1,3 

-                and  √
 

  

  
 

 

          
 

      

 

 
 

4 

 
 
- 

 
 
- 

 
 

+ 

 
 

+ 

 
 

1,3 

-                and     > 
 

        

-                  and    > √
 

  

  
 
 

       

-               and     >  
√     
 

   

-              and     
   

   
  

 
5 

 
- 

 
- 

 
- 

 
+ 

      
         1,3 

-                and  
√     
 

  
    

   

   
  

 

 
 

6 

 
 
- 

 
 
- 

 
 

+ 

 
 
- 

 
 

1,3 

-                 and    √
 

  

 
 

 

        
√     
 

   

-           <    <         and   
   

  
    

√     
 

    

 

The analysis of these conditions is trivial, but to clarify this we analyze case1from 

Table 4.4.2  in details as follows :   
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       Case1 is satisfied if                and      which is reduced  to 

              
 

  
                     

   

     
            

      

 
    and                   

, i.e.   

                       
      

 
        

 

  
     and      

   

     
                                  (*)  

There are two possible cases considered in solving these inequalities : 

1)  If      , then  the intersection of the inequalities in (*) is  
      

 
         

 

  
.  

Also, we consider the condition 
      

 
 

 

  
 to be satisfied                   

  

  
                          

                                                                                                                                 

So we conclude that the conditions for the this case are:  

                      and     
    

    
      √

 

  

  
 

 

  
           . 

2) If      , then the intersection of the inequalities in (*) is  
   

     
                     . 

Again,we consider the condition  
   

     
        to be satisfied           

  

   
                

                                                                                                                           

So we conclude  that the conditions  for this case are :   

                               and   
 

       
    

√     
 

  
                         

         In the same way, we can prove the other cases. 

Remark 4.4.1.  The maximum  number  of  positive  roots for equation (102) that 

corresponds to a shifting-invariant phases for Ising-Vannimenus Model with 

Hamiltonian (66) and boundary function   (83) is three based on Descarte's Rule. 

 Next, we consider the following Examples on Descarte's Rule such that we 

confine the values of      and    in which the phase transition possible to exists. 
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Example 4.4.1  

Let    =       and     =    . Then, if we try to find the conditions in which it is 

possible to find 3 roots for the fuction       (102), we conclude that the 

conditions are: 

1)                      (from case(6) in table 4.4.2) . 

2)               (from case (4) in table 4.4.2) . 

3)                    (from case(1) in table 4.4.2). 

As a result, in order to detremine phase transition region we restrict the values of 

   such that         ,                      , i.e.  when    =                

and        .Then, phase transition  does not exists. 

Example 4.4.2  

Take                  and       . Then, in the same way as Example 4.4.1 

,we find the conditions on    in which it is possible to find 3 roots for the 

polynomial (102) and the results are : 

1)                      (from case(3) in table 4.4.2). 

2)           (from case(4) in table 4.4.2). 

 

Then, we can exclude the values of    that are less than or equal                    

Although Descartes' Rule is needed to determine the possible conditions for phase 

transition to exists, but in order to determine the exact conditions for phase 

transition we need further analysis as following : 

  Consider the first derivative for the function   (101) : 

      
     (                                 )(                                              )

                                                 

   (                                 ) (             (              )     (          ))
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                 and                    is increasing   if) Now                         

If        ,  then   is decreasing and there is only one possible solution 

of      (102).  Thus, we can restrict ourselves to the case in which                 

As we have mentioned in chapter 3, there is more than one solution for        

if and only if there is more than  one  solution to                 , which 

reduced to the following equation:                                   :                                                     
                                                                                   

(                                    (       )              (       )  

         (                          )      (                    

         )      (                             )     (             (      

      )     (       )))                                                                                                             

                                                                                     

Then, by analyzing this equation using Mathematica Programming [57], there are 

two positive roots for this equation if the following conditions satisfied:           

Let      and         the positive root of the following equation  for a specific  

value of      : 

                                                                                          (105) 

Then, there are two Positive roots for equation (104)  iff              and    

        Assume, if these conditions are satisfied , the roots of polynomial (104) are  

    and    such that           Then there are more than one fixed point 

for the function       if                  . As a result, this construction 

provides the following proposition: 

 

 



 
 

66 
 

Proposition 4.4.1. The equation 

                            
(                                                    )

(                                                     )
                  (106)                                       

with                and       has one positive  solution  if     . If 

         such that         the  positive root of the equation    

                                                             ,   

Then, there exist       
                   

         0   such that equation (106 ) 

has at least two positive roots if        
                   

            where    

                                                                   
         

    
  

  
 

                 

Where     
         are the  positive solutions for the equation  

 

(                                    (       )              (       )  

          (                             )       (                    

           )       (                                   )       (          

     (           )     (       )))   , and       is the function  in (101). 

  

Remark 4.4.2.  If the function    in equation (101) changes it's concavity from up 

to  down around       where     , and  if                or             

 .Then, there are exactly 2 positive roots  for equation (34). Otherwise , if 

                         then there are 3 positive roots under the same 

concavity conditions.  

As a result, we conclude that Ising-Vannimenus Model with Hamiltonian (66) 

exhibits a phase transition if there are more than one positive root for equation 

(106) due to proposition 4.4.1 Conditions.           
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                  4.5 Numerical Examples of Phase Transition   

In this chapter, we present some numerical examples by using an elementary 

analysis , i.e., we obtain the fixed points of the function   that given in section 4.4  

for a specific  values of         and     Thus, we use Wolfarm Mathematica [57] to 

solve this equation and try to find the conditions for phase transition to exists due 

to proposition 4.4.1. We only deal with positive fixed points, because of the 

positivity of exponential functions.                    

We try to check the existence of phase transition for different values of  the 

coupling constants           and the temperature  , i.e., for different values of 

      and   , in the following Examples :                                 :                                                                                                                                                       

Example 4.5.1 

 Let            and    , then           Then from proposition 4.4.1 we  

conclude that there are two positive roots      and    for equation       if 

              such that                                                                                 

Let                       then there is a phase transition if  

                                                                     . 

 By using Mathematica Programming [57], this condition is satisfied iff   

                                               

Take            , then the roots of polynomial        are  

                                             and                  

As a result, there are 3 translation invariant Gibbs measures, i.e., there exists 3   

positive fixed points  for the function   in equation        and  these fixed points 

( phases) are   
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                                                          and            

         See Figure 4.5.1. 

Note that               =          . Then, from Remark 2.2.3 we conclude 

that the positive fixed point             is a stable one. As a result , the Gibbs 

measure at this point is extreme, and the same thing for           such 

that               =          . which means we have two extreme Gibbs 

measure. Also,             =         , thus           is not stable fixed 

point of       and the corresponding Gibbs measure for this point need not be 

extreme.                                                                                                            . 

Example 4.5.2 

Let         , then from Proposition 4.4.1, same as the previous Example, there 

is two positive roots      and    for equation       if               such 

that                    

Take        , then the phase transition exists if                     . This 

condition is satisfied iff   

                                             

 Let        ,  then the positive roots of equation (104) are  

                                            and                 

As a result of Proposition 4.4.1, we have more than one positive fixed point for 

the function     and these points are                        and   

         

Thus, there are 3 translation invariant Gibbs measures corresponding to that 

points when                and          It's clear from Figure 4.5.2 that the 
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first and third fixed points are stable, but the second one is unstable. We can make 

sure by using first derivative test as Example 4.5.1. 

Example 4.5.3 

Let       ,   then  there are two positive roots      and    for equation      if 

             such that              . 

Consider           , then there is a phase transition if  

                                          

Let take         ,  then the positive roots of equation (104) are  

                                               and                   

Then, we have more than one positive fixed point for the function     and these 

points are    

                       and              

It's clear from Figure 4.5.3 that the first and third fixed points are stable, but the 

second one is unstable. We can make sure by using first derivative test as 

mentioned in Remark 2.2.3. 

Remark 4.5.1. If we take                        in Example 4.5.3 such 

that          by [57] in this case. Then, there are exactly two fixed  points for 

     :   

                                                   and             

Thus, there are two translation invariant Gibbs measures corresponding for these 

points. That's what we noted in Remark 4.4.2 (see Figure 4.5.4). 
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4.6 Comparing the Results of Descartes' Rule with the Results of           

Proposition 4.4.1 

As we have mentioned in section 4.4, Descartes' rule is needed to determine the 

intervals in which it's possible  to find 1 or 3 fixed points  for     . In contrast, 

Proposition 4.4.1 gives exact results about the existence of phase transition, i.e.  

more than one fixed point for the function   are surely exists. As a  result, it's 

clear that the values for       and    that satisfying proposition 4.4.1 conditions 

are surely contained in Descartes' rule intervals for the existence of phase 

transition. 

To clarify, consider Example 4.4.2 such that         and     . Then, from 

Proposition 4.4.1 and by analyzing equation       using Mathemaica 

Programming, the phase transition exists iff                 . Note that 

                        , where          is the interval of    that we have 

found from Descartes' rule conditions that is related to case(4) in table(4.4.2). So, 

Descartes' Rule helps to confine the intervals where the function   has one or 

three positive fixed points but  on the other hand proposition 4.4.1 gives the exact 

conditions for the existence of more than one positive fixed point for the function 

 . 
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Figure 4.5.2. The existence of 3 positive fixed points of the 
function      for             and                  

Figure 4.5.1.  The existence of 3 positive fixed points of the 

function       for                 and           

 

Figure 4.5.4.   The existence of 2 fixed  points of the function 

     for                               and        
Figure 4.5.3. The existence of 3 positive fixed points of the  

function      for                 and               
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                                             Chapter Five  

  The Third Model: 

5.1 A  -State Potts Model with Next-Nearest-Neighbor Ternary  

Interactions on a Third-Order Cayley Tree  

It is natural to consider models with ternary interactions, i.e., interactions of triple 

neighbors as we have done in chapter 3. Monroe (1992) [45, 46] studied the Ising 

and the Potts models with ternary interactions only. Recently, Ganikhodjaev et al. 

(2011)         studied the Potts model with competing ternary interactions 

actions    and    and NN interactions   on the Cayley tree of second order with 

three states space        . In (2012) [24]  the phase diagrams for the Potts model 

with restricted competing NN interactions   and ternary interactions    on a 

Cayley tree of arbitrary order   with 3 state space is constructed. In this section, 

we prove the existence of phase transition analytically for the same model with an 

arbitrary number of states    ,     on Cayley tree of order 3, i.e, we develop 

the model in [24] for   state space and determine its' effect on the phase transition 

conditions. 

5.1.1 Model Construction  

Consider a Cayley tree of order 3, let                 and let             

               and               be 3 edges emanating from     . It is 

evident that a semi-infinite Cayley tree   
  splits into   components , i.e., 3 single-

trunk Cayley trees   
      ,          . Let     be the set of vertices of a single-

trunk Cayley tree   
      ,  and    

          be the set of vertices         

with  (      )    . 

Consider the Potts model (See Section 2.3.2) with spin values in 

                                                  ,                                                  
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, i.e., the spin variables     ,       takes these values. 

Then, relevant Hamiltonians with competing NN interactions  , and TPNNN 

interactions    have the forms  

            ∑              
       

  ∑          
     

                            

Where        are coupling constant,   in the second sum is the usual 

Kronecker symbol and   in the first sum in (108)  is the generalized Kronecker 

symbol defined as 

 

                 ,
                       

                                      
    

 

Conditional Gibbs measures with fixed boundary conditions 

 

In this section, we will produce recurrence relations by  fixing boundary 

configurations  ̅           for the ball    such that  ̅                   

    /  },   is the state space in (107) and    . Let  ̅          be a fixed 

boundary configuration, i.e.  ̅                         . From [25], the 

notion of total energy        | ̅          of configuration       under 

boundary condition  ̅         and partition function    
  ̅          in volume 

   under boundary condition  ̅         is introduced as the following : 

                                

       (     | ̅        )         ∑                        
        

  ∑                 
       

     

                                                            ∑             ̅           
      

        

     ∑         ̅̅ ̅̅         
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  ̅          ∑          (     | ̅        )              

          

 

 

Then, the conditional Gibbs measure    
 of a configuration σ(  ) that defined on 

the ball         is defined as 

                         
(     | ̅        )  

   (    (     | ̅        )) 

   ( ̅        )
     

Here, the configuration      , the partition function    
  ̅          and the 

conditional Gibbs measure      
(     | ̅        )  in volume (ball)    will be 

denoted  as   ,      and   , respectively. In this section, we fixed the boundary 

condition   ̅                 and then build the recurrence equations for the 

conditional partition functions under this boundary condition.  

In order to produce the recurrence equations, we use  partition function method in 

the same way as [1, 24, 25]. This method depends on  the  relation of the partition 

function on the ball      to the partition function on its subsets   . Given the 

initial conditions on   , the recurrence equations will indicate how their influence 

propagates down the tree. We should take into account the partial partition 

functions for all possible configurations of the spins in two successive 

generations , i.e., all possible configurations on the ball   . 

We consider the following partition functions: 

-           which represents a partition function on   
    with the configuration 

      on an edge          , where        and                    

-                    is a partition function on    where the spin in the root      

is    and the 3 spins in the    are                , respectively. Clearly     

      and       (107). 

From [21], it's clear that we can write the partition function in term of its 

component from single-trunk Cayley tree (see definition 2.2.3)  
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                                                      ∏        
 
                                                         

There are          different partition function                    on the ball   . 

 The partition function       in volume    be written as  

                            ∑                  

 

             

                                  

We consider the partition function  in equation (108) , with a fixed spin    in the 

root     , where             and let    be the number of spin     and    be 

the number of spin      and    the number of spin     and  ……..     the 

number of spin {q    on the same level    such that               . It 

is evident that 

 

                   =                                             

                   =                                                         (110)          

                                                                            ……..  

                 =                                            

 

In the same way as [24], we assume that       , and we fix  the boundary 

condition to be one   i.e.   ̅̅ ̅      where    ̅̅ ̅               /  }. 

 Remark 5.1.1.1 Consider all partition functions in volume   
   under the 

boundary condition    ̅̅ ̅̅     . Then we conclude that  

                                             where                 

                                                                                             (111)             
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Where               and         

Proof. 

Assume that               and assume we have q states such that the states 

space is                 ,        . Let                      

        We prove this remark by induction      as following : 

- For    , it's clear that  

                                                   

                                                                                  (112)  

                                               

                                                                                                                             

Clearly it's satisfied for    . 

- Assume it's true for        , i.e., 

                                                                     

                                                                                                       

                                                       

- We show it's true for       

It's clear that                                        under the boundary 

condition   ̅̅ ̅     . 

To prove the other relations, take an arbitrary                     Then, 

                                        (         )
 

 (         )
 

 ∑ (         )
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             ∑ (         )
 

(         )

   

  ∑ (         )
 

(         )

   

 

             ∑ ∑ (         )
 
(         )       ∑∑ ∑ (         ) (         )

 
   

       

(         ) 
 

   
   

 

 
 

   
   

 
   

 

  

     Where          

From the assumption when    . It's clear that              is the same value 

                     . Now consider the following relations:             :      

                     .                                                  

                (         )
 

 (         )
 

 ∑ (         )
 

   
   

  

                                      ∑ (         )
 

(         )

   

   ∑ (         )
 

(         )

   

 

                             ∑ ∑ (         )
 
(         )

   
   

    

   ∑∑ ∑            (         )
 

   
       

(         ) 
 

   
   

 

 

   

                           (         )
 

     ∑ (         )
 

(         )

   

 

                            ∑ (         )
 
(         )

   

        ∑∑
    

                                   
   
    

   

 

                            ∑(         )
 

    ∑ ∑ (         )
 

(          )                          

           

 

                   ∑∑ ∑            (         )
 

   
       

(         )                                                       
 

   
   

 

 

Then, basing on our assumption , it's clear the equality satisfied for      . 

As a result, the remark is proved by induction. 
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As  a result of the relation      ,  we can reduce the system       into the 

following system of 4 independent variables : 

       
    √             

 
 √(         )

  

           

     
    √             

 
           

       
    √             

 
           

       
    √             

 
           

Assume      
   

 and    
    

     
, where                

Then, we establish the following recurrence equations for the Potts model with 

Hamiltonian       with   state space ,    . These equations are: 

     
         

                
                 

         
        

                (
   

 
)      (

   
 

)    

     =          
                

                 
    

         

         
                  

                                                                                   

  
     

       
     

                
          

    
  

                      
            

             
                     

Then,    
                 

                                                                                  

In the same way, we get  
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  ((116                                                  
                     

    Then,  

Now Define the following operator  

                      (    )      (  
   

   
   

   
   

   
   

)    
 

        (  
     

   
     

   
     

   
     

)      
         

Thus, the recurrent equations (113-116) can be rewrite as                          

Let define the operator   on the following shifting-invariant set 

                       
          and         ,  

Remark 5.1.1.2.[24, 26] It's known that  the set of Gibbs measures that 

corresponds to solving the operator          on the shifting invariant set    is 

called Paramagnetic or high symmetry phases. 

Thus, to investigate the paramagnetic phases, we reduce the system of equations 

(113-116) into only two recurrent equations as follows:  

    
            

           
   

                                                             

                  
     

     
           

   
                                                                   

           
    

     

    
      . Then, the system of equations (118-119) is reduced to the 

following nonlinear dynamical recurrent equations                             .                                

                                         

                                          
               

            
                                       

It's easy to  conclude that corresponding limit Gibbs measure is fully determined 

by fixed points of recurrent Equation  (120)   i.e., solutions of equation         . 

So let define the following function            such that                                          
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Then, if there is more than one positive solutions for      
 

 
, a phase transition 

exists [4], i.e., there exists more than one paramagnetic phase for our model.          . 

          .                                    .                                                              

5.1.2 Phase transition  

In this section we  prove the existence of phase transition by analyzing the fixed 

points of the function   in equation (121).                                                                   

It's is clear that      is continuous          ,           and   is a bounded 

function since              . As a result ,  the curve          must intersect 

a line           
 

 
    . Therefore, this construction provides at least one 

element of the translation-invariant  paramagnetic set of Gibbs measures 

corresponding to the model (108) for any                                               .           

                                                                                   

                          
                      

         
                                                       

Note that           (  is increasing)  iff           and       so we      

restrict ourselves for the case when                                                                                 

The second derivative:    

 

            
                                      

        
   

 

    Then ,  (              )                               
 

 
        

    It's clear that the inflection point          iff      ,  so we consider    . 
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    For     , it's clear that                 is concave up      iff               

                                                  and              (  is concave down)  iff           

 Then, there is at most 3 Positive fixed points for      (121) . 

As we know from Preston [50], there is more than one solution for        iff 

there is more than one solution for              which is reduced to the 

following equation:  

                                  
          (                        )

        
                        (122)   

 Now we  find the conditions for the existence of two positive roots for equation 

     . 

Consider the quadratic equation                               . 

Then there is more than one real solution for this equation iff the discriminant  

    , it's clear that 

                                                 

                    iff        where          

As a result, under these conditions we have two positive roots for equation (122)  

which are  

         
         

 
 √

                                  

  
 

     
         

 
 √

                                  

  
                                  

         . Thus, we can conclude the following proposition, 
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Proposition 5.1.2. The equation 

                                                        
 

  
 

              

            
                                       (123)                                       

with               and           has one positive  solution if    .     

If      then there exists                       such that equation (123) has 

three positive roots if            
 

 
           and has two positive solutions if 

either          
 

 
  or           

 

 
    where    

               
      (      .

         

 
 √                                  

  /)

 

       

      
         

 
 √                                  

    
                            

             
        (      .

         

 
 √                                  

  /)

 

       

      
         

 
 √                                  

    
              

 

Proof.   

Consider the function        . If    , then   is decreasing and there is only 

one positive root for equation (123). 

If    , then   is increasing , changes it's concavity from up to down and there 

are two positive roots for               in equation (122) such that the roots 

are    and     that we have founded in the previous page. Then, from Preston [50] 

we conclude that there are 3 positive roots for equation (123) if         
 

 
 

       and there are two positive solutions if        
 

 
  or         

 

 
. By 

substituting    and   , the proof is readily completed. 
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 Note that the inequality            
 

 
           could be reduced to the 

following inequality 

 
      

         
 

 √                                  

    

      (      .
         

 
 √                                  

  /)

 

      

    

   
      

         
 

 √                                  

    

      (      .
         

 
 √                                  

  /)

 

      

             

  

From Proposition 5.1.2, we conclude that the phase transition exists if    , i.e.,   

                           but    
 

 
            

  

      
      . Hence, we obtain 

the following Theorem 

Theorem 5.1.2. Let      be the coupling constant that corresponds to PTNNN 

interactions and     
  

   
   If        , then the model (108) has unique 

paramagnetic phase and if        , then there are three  translation-invariant 

paramagnetic  Gibbs measures for the model  , i.e., The phase transition exists. 

Remark 5.1.2. If we take the limit of the function   in equation         as 

                    
            

           
     Then there is only one solution for  

equation (123) and the solution is    . As a result, the paramagnetic Gibbs 

measure in this case is unique and the phase transition does not exist.  

We consider some numerical examples for the existence of phase transition 

related to the model (108).  In addition, we  consider different values for the state 

space     and show the effect of increasing the number of states on phase 

transition. 
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    Example 5.1.3   

Consider      and        Then     
 

   
          so phase transition exists 

if          . Let              then     
 

         . Thus, from proposition 

5.1.2 and inequality       we  conclude that there are 3 phases (phase transition 

exists ) if      

                                                                     

  Let        (            ). Then, there are 3 solutions for the equation 

      
 

 
 , and these solutions are 

                                          ,              and              

As a result, there are 3 translation invariant paramagnetic Gibbs measures 

corresponding to these roots. See Figure 5.1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1.3. The  existence of 3 translation-invariant paramagnetic 

phases when    ,           ,      and            . 
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Now for the same value of  , i.e., for       we consider different values for the 

state space        and see the effect of increasing the number of state space on 

the values of   where the phase transition exists as the follows: 

For     and according to proposition 5.1.2, there exists 3 positive roots for      

equation (123)  if                        

For      then                        

For      then                        

For      then                          

For      then                          

For      then                             

For        then                         . . . . . . .  

  For         then                           

Now we take different value for  , suppose      . Again, we try the   following   

cases : 

For    ,                        

For    ,                        

For    ,                        . . . . . . . 

Note that the length of the interval (124) is         
           √

(       )       

  

     
,  

and it's clear that for a fixed value of  , the length of the interval increases as   

increases. In addition, the derivative for the left hand side for the interval (124) 

with respect to   is                                    .   
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 (      .   √(       )       

    /)(      .   √(       )       

     /)

 

        (     .   √(       )       

    /)

     

Note that                       , i.e., the value of the interval starting 

point increases when   value increases. So we conclude the following remark : 

Remark 5.1.3. For a fixed values of the coupling constants     and    for the 

model (108). Then, an increase in  the value of     (state space) increases the 

phase transition range (paramagnetic region), but the value of the critical 

temperature decreases. 

  5.1.4 Periodic Gibbs Measure  

It's known that investigating the existence of periodic points is one from the 

interesting problems in non-linear dynamic systems [27]. In statistical physics, 

these periodic points reveal the phase types corresponding to the given model [1]. 

In this section, we prove the existence of 2-periodic Gibbs measures for our 

model (108). 

Definition5.1.4. [1] A point                          is called a periodic 

fixed point of the operator   if there exists     such that             where 

   is the     iterate of  .  

It's known that the smallest positive integer   satisfying the above is called the 

prime period or least period of the point  . The set of periodic points with prime 

period   denoted by        . 

Let describe the periodic points with       for operator F (117). Then,  in this 

case the equation              can be reduced to a description of  -periodic 
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points of the function    defined  previously (121), i.e., to a solution of the 

equation  (    )      

Remark5.1.4. [1] The 2-periodic positive fixed point of the operator F(117) 

defined on the set     described a paramagnetic periodic Gibbs measure with 

p=2. 

Consider      
              

           
. It's clear that the solutions for        are 

trivially  a solutions for the equation          . Thus to exclude this case, i.e., 

to find         we will consider the equation: 

                                                       
  (    )   

      
                                                           

Hence, the solution for this equation are the fixed points with prime period =2, i.e., 

we will get the set     {                       (    )            }  

Now equation       is reduced to 

  
 

(                           )
 
                                               

                                                                                   

                                                                                           

                                                                                       

                                                                                            

                                                                                                                              

                                                                                                

                                                                                                                                             

                                                                                                      

         (                                       )                                                
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Since the previous equation is complicated, we use Mathematica      to investigate 

the conditions for the existence of more than one positive root , and the results that 

there are two positive roots (two periodic Gibbs measures with      if 

        
 

 
 and                          where                                                              

                
                                   √                           

     

    
   

                  
                                    √                           

     

    
 

 

Thus we have proved the following 

Proposition 5.1.4. The equation (125) has no positive solutions if   
 

 
, and if    

    
 

 
 then there exist                 such that the equation has two 

positive solutions if                   and      . 

Theorem 5.1.4. Let     , then there exists a critical temperature     
  

         
 

  such that if       and the conditions of the proposition5.4.1 are satisfied, then 

there are two periodic Gibbs measures with p=2 for the model (108), otherwise 

there is no periodic phases with p=2, i.e., no phase transition exists for period 2 

paramagnetic phases. 

Example 5.1.4  

Let     and   
 

 
. Then from (126) there are two periodic Gibbs measures with 

period 2 if 
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Let    , then the fixed points for equation (125) are                      ,  

and these   points corresponds to periodic Gibbs measures with period  . See 

Figure 5.1.4.  

 

 

 

 

 

 

 

 

 

 

 

5.2 A  -State Potts Model with Next-Nearest-Neighbor Ternary and 

One-level Next-Nearest-Neighbor Interactions on a Second-

Order Cayley Tree  

In this section, we consider a Potts model with NN, TPNNN and OLNNN 

interactions on a Cayley tree of order 2.  As we have done in section 5.1, we 

prove analytically for the first time the existence of phase transition for this 

model. 

5.2.1 Model Construction  

Consider a Cayley tree of order  , let            and let             

 and               be 2 edges emanating from     . Then this semi-infinite 

Cayley tree   
  could be splits into   single-trunk Cayley trees   

      ,       . 

 

 

Figure 5.1.4. The existence of two periodic Gibbs measures (two 

positive roots for equation (125)) when   
 

 
     and        
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Let     be the set of vertices of a single-trunk Cayley tree   
            ,  and  

  
          be the set of vertices         with  (      )    . See Figure 

5.2.1. 

 

                                                                                            
 

                                                                                                                 
                                                                                                         
                                     
                                  
                                                      

                                                                … … …… … …… 

                                                                                                               
                     
                                                                                                    
                                                                                                             
       … …… …… … ….. 

                                                                                  
                                                                                                               
                                                                                         … … …… … …… 

Figure 5.2.1.The semi-infinite Cayley tree   
   decomposes into two single 

trunk Cayley trees :   
       and    

           
 

Consider the Potts model  with spin values in            , i.e., the spin 

variables     ,      , take these values. 

Then, the relevant Hamiltonians with competing NN interactions  , TPNNN 

interactions    and OLNNN interactions     have the forms  

 

                ∑              
       

  ∑          
     

    ∑          

     ̃

           

Where              are coupling constant,   in the second and third sum is the 

usual Kronecker symbol and   in the first sum is the generalized Kronecker 

symbol. 
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In the same way as the model in section 5.1, we fix the boundary condition  

 ̅                 and then build the recurrence equations for the 

conditional partition functions under this boundary condition .  

Now we use partition function method to construct a relation between the 

partition function on the ball      to the partition function on its subsets   . 

Given the initial conditions on   , the recurrence equations indicate how their 

influence propagates down the tree.  

Then, it can be easily  proved that under the interactions in (127) and with the 

boundary condition    ̅̅ ̅     , the partition functions in volume   
          

satisfy the following relations :                                                                             

                                            

                           

                           

The proof for these relations could be done in the same way as Remark 5.1.1.1 

with fixing the value of   to be  . 

  Assume         ,         ,        and 

       
    √           

 
            

   
    √           

 
            

          
    √           

 
           

          
    √           

 
           

 After a direct calculation, we get the following recurrence equations: 
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  (      
    

       
      

              
    

)                                                                                

    
     

 (    
    

     
      

        
      

        
      

         
    

     
    

)                             

   
     

 (    
    

     
      

            
    

)                                                                                             

  
     

  (    
    

     
    

   
           

      
          

      
         

    
         

    
)                   

We define an operator   (117) on the system of  recurrent equations (128-131) 

such that this system can be rewritten  as            (     )        We define 

this operator on the following shifting invariant set: 

                      
          and         ,  

From Remark 5.1.1.2, we conclude that the set of Gibbs measures that 

corresponds to solving the operator          on the shifting invariant set   are 

called Paramagnetic Shifting-Invariant Phases. 

 Therefore,  to investigate the paramagnetic phases, we will reduce the system of 

equations (128-131) into only two recurrence equations  by defining the operator   

on the set  . The equations are:  

         
       (      

    
       

      
             

    
)                  

        
      (    

    
     

      
            

    
)                               

   Let      
    

     

    
     .Then, the system of equations (132-133) is reduced to the 

following nonlinear dynamical system of recurrent equation          

                                                                                                            

      
  (      

               )

            
      

                     (134)                      
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In order to determine the corresponding limiting Gibbs measure , we find the 

fixed points of recurrence equation  (134) , i.e., solutions of equation         . 

So, define the following function            such that                                            

                                                  
                      

                
                               

 

Then, if there is more than one positive fixed point for     , a phase transition 

exists [1], i.e., there is more than one translation invariant paramagnetic  phase for 

our model.                                 .                                    .                                           

         

5.2.2 Phase Transition  

 In this section, we prove the existence of phase transition for Potts model with 

the    Hamiltonian  (127)   by analyzing the fixed points  of the function   (135). 

It's clear that      is continuous       ,             and   is a bounded 

function.   As a result, the curve          must intersect the line       . 

Therefore, this construction provides at least one element of the translation-

invariant  paramagnetic set of Gibbs measures, corresponding to the model (127) 

for any          Let start with the first derivative, for                                         

                                            .                                                                                                  

            
  (                         (          ))

(            )
  

       
                                         

                 
 

Notice that           (  is increasing)  iff          and       so we 

restrict ourselves for the case when         
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  Now, the second derivative is:    

 

           

 
                                                                                           

               
  

   

 

Then,   there is an inflection point         such that 

                                          (   is concave up)     if               

              and           (   is concave down)  if           

 Iff  (                and     
      

    
  )  or  (              and      ) 

According to Preston     , there is more than one solution for        iff there 

is more than one solution for             , which is reduced to the following 

equation:  

                    
                                                              

                
                      

Then from [57], we conclude that there are two positive roots for the previous      

equation  iff  

                     √ (
          √        

      
)   and the roots are 

                     
   √ √                           

   
                                                                                                   

           
 

 
√                                √ √                         

    
              

                 
   √ √                         

   
    

 

 
√                                √ √                         
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It's clear that   √ (
          √        

      
)  

      

    
           

Then, we can get the following proposition  

Proposition 5.2.2. The equation 

                                                 
  (                   )

                    
                                                                             

 with             and        has  one positive  solution  if    . If    

    √ (
          √        

      
) , then there exists                          such 

that  equation       has three positive roots if                               and 

 has two positive solutions if  either                 or                  where 

                 
  ,                  

   and 

   
   

   √ √                           

   
                                                                         

              
 

 
√                                √ √                         

    
                                                                                                                                                                  

   
  

   √ √                         

   
    

 

 
√                                √ √                         

    
  

Proof.   

Consider the function        , if    . Then   is decreasing and there is only 

one positive root for equation (137). 

If    √ (
          √        

      
), then   is increasing , changes it's concavity 

from up to down around      and there are two positive roots for                

in equation      , the roots are   
  and   

 , then from Preston [50] it's clear that 

there is 3 positive roots for equation        if       
          

   and there 
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is two positive solutions if       
      or       

    . The proof is readily 

completed.    

From Proposition 5.2.2, if    √ (
          √        

      
), then by 

substituting          and        , we get          

                                   √ (
                  √                

     (       )
) ,    but    

 

 
    

             
 

    √ 

(

  
      

   
    

    
  

√
    

   
    

    
 

 

   
 (   

   
 )

)

  
 

 

                      

Then, we obtain the following theorem: 

Theorem 5.2.2. Let              be the coupling constants that corresponds 

to PTNNN and OLNNN interactions respectively, and let     be the 

temperature. Then  if 

                                                 
 

    √ 

(

  
      

   
    

    
  

√
    

   
    

    
 

 

   
 (   

   
 )

)

  
 

 

  

there are three  translation-invariant paramagnetic  Gibbs measures, i.e., there 

exists a phase transition. Otherwise, the phase transition does not exist. 

 We give a numerical example on phase transition for model       according to 

Theorem 5.2.2 and proposition 5.2.2. 

Example 5.2.3 

Let     , then according to proposition 5.2.2, the phase transition exists if 

             . 
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Assume      , then,    
               and    

             . 

As a result , there are   positive roots for equation (137) if  

                                                                                       

                                                                      

                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

 Let            , then the three  fixed points (phases ) are  

                             and              

We conclude that there are 3 translation-invariant paramagnetic Gibbs measures 

corresponds to these positive roots. See Figure 5.2.3.   

 

 

                                  

                     .                

             .                           

                                              

             .                               

     

           

 

 

 

 

               

 

 

 

Figure 5.2.3. The existence of 3 translation invariant 

paramagnetic phases for model (127)  when    ,       

and             .                                                                  
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5.3  A 3-State Potts Model with Next-Nearest-Neighbor Ternary and 

One-Level  -Tuple Interactions on a Third-Order Cayley Tree 

 

In this Section, we develop the model in section 5.2 such that we consider Potts 

model with NN interactions, TPNNN interactions and OL 3-tuple interactions on 

a Cayley tree of order 3, see definition 2.2.12.  As we have done in section 5.1 

and 5.2, we prove the existence of phase transition analytically for this model. 

5.3.1 Model Construction  

Consider a Cayley tree of order  , Let                 and let             

 ,              and                be 3  edges emanating from     . Then 

this semi-infinite Cayley tree   
  could be splits into   single-trunk Cayley trees 

  
      ,         . Then     are the set of vertices of a single-trunk Cayley tree 

  
              . 

Consider that model with spin values in              . Then, the relevant 

Hamiltonians with competing NN interactions  , TPNNN interactions    and OL 

3-tuple  interactions    have the forms  

                 ∑              
       

  ∑          
     

   ∑                 

       

       

             

Where             are coupling constant. 

In the same way as the models in section 5.1 and 5.2, we will  fix the boundary 

condition   ̅                 and then build the recurrence equations for the 

conditional partition functions under this boundary condition.  

Remark 5.3.1. We can fixed the boundary condition for any value from state 

space   , i.e.,  ̅                    and the results will be the same for all 
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As we have done before, we use partition function method to construct a relation 

between the partition function on the ball      to the partition function on its 

subsets   . Now  it can be easily  proved that under the interactions in (138) and 

with the boundary condition    ̅̅ ̅         . Then, the partition functions in 

volume   
             satisfied the following relations : 

                                            

                                                                                                           

                           

The proof for these relations could be done in the same way as Remark 5.1.1.1. 

   Assume        ,        ,        and 

  
     √             

 
           

    
     √             

 
           

  
    √             

 
           

  
    √             

 
           

Then, we know that the construction of  conditional  partition function for 

Hamiltonian (137) under the condition   ̅           is defined by  

                 
  ̅            ∑                | ̅                            

          

 

Where  
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                        | ̅                ∑                        
        

  ∑                 
       

 

                                      ∑                 

       

       
      

    ∑               

       
      
        

    ∑         

     
     

        

             

       

Then, from (139-141) and after a direct calculations we get the following 

recurrence equations for the        boundary conditions                                       

    
           

            
        

               
   

   
       

         
         

      
         

    

                
            

      
      

    

   
       

      
          

                
     

  
          

       
      

         
            

     

                
          

      
                       

    

    Where      
   

 and    
    

     
          .  

In order to get the shifting-invariant paramagnetic phases for this model, we 

define the operator         on the previous set of recurrence equations. In the 

same way as the previous sections (5.1 and 5.2), this operator will be restricted on 

the shifting-invariant set                                                                                       

                      
          and           

As a result,  to investigate the paramagnetic phases, we reduce the system of 

recurrence  equations  into only two recurrent equations  by defining the operator 

  on the set   . which  trivially reduced to the following nonlinear dynamical 

system of recurrence equation:                                   .                                                    
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             Where       
    

     

    
     .  Define the function   

           
                                   

                              
                  

In order to determine the corresponding limiting Gibbs measure, we will find the 

fixed points of the function  (142)    i.e., solutions of equation         . Then, 

if there is more than one positive fixed point for     , there is more than one 

translation-invariant paramagnetic  phase for our model.                 .                       
                                                                        

5.3.2 Phase Transition  

In this section, we  prove the existence of phase transition for Potts model with 

the    Hamiltonian  (138)   by analyzing the fixed points  of the function                                                 

It's clear that      is continuous      ,           and   is bounded 

function.  As a result,  the curve          must intersect a line        and a 

Gibbs measure is exist  now let us search for the conditions of phase transition as 

we used to do before :                                                                                                                                                             

                                
                                       

                  
 

  
                            

                  
   

It's clear that            iff      . Note that this condition appears in all 

Potts models that we have studied, then we conclude if  
  

 
  , the phase 

transition does not exists, i.e., for the phase transition to be exists,   

   and   must have the same signs.  Now let consider the second derivative         
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(               )
                                  

                                                

                                                  

                                     

 

From Mathematica [57], if  (      and   
    

   
   or        and        

. Then, there is an inflection point         such that 

                                     (  is concave up       if               

               and           (  is concave down   if           

 

According to Preston [50], there is more than one solution for        iff there 

is more than one solution for             , which reduced to the following 

equation  

                        

      
  (       (                   )    (     (     )   (     )    (     )       )   (   (     )       ))

(               )
                   

 

Then from [57]  we conclude that there are two positive roots for the previous 

equation iff one of the following cases is satisfied: 

Let      

Case 1: If                      , then there are two positive roots for 

equation (143)  iff           where        is the second smallest real root for 

the  polynomial (144) . 
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Case 2: If               , then there two positive roots for (143) iff  

            where         the first real (positive) root for the polynomial   

(144). 

Case 3:  If      , then the roots exists        . 

Then, we conclude the following proposition: 

Proposition 5.3.2. The equation 

                                  
                                   

                              
                                             

With               and        has  one positive  solution  if    . If 

one of the following conditions are satisfied: 

a)                        and          .  

b)                and           . 

c)           . 

Then, there exists                                     such that   equation (145) 

has three positive roots if                               and has two positive 
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solutions if either                 or                   where           

     
    and                 

    such that   
  and   

  are the positive solutions of 

the equation       

                                                            

                                            

and              are the second and the first smallest real roots for equation 

     , respectively. 

From the previous proposition, we conclude that if            , i .e., if 

  
  

             
,     , then phase transition exists. So we get the following 

Theorem : 

Theorem 5.3.2. Let       be the coupling constant that corresponds to TPNNN. 

Then, if        where     
  

             
 , the model (138) has three  translation-

invariant paramagnetic  Gibbs measures, i.e., there is a phase transition on the 

paramagnetic phases. 

Example 5.3.3 

Consider the first case in proposition 5.3.2, let                 

           . Then by manipulating equation (144) in Mathematica [57] we get 

that the roots for this equation are  

                                                                        

                                                           

                                                       

                                     

 It's clear that                   . So we will take            . 
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Let     . Then    
             

          , so  according to proposition 

5.3.2 there are 3 phases (phase transition exists) if 

       
            

                         . Let            then 

the 3 positive roots (that corresponds for 3 paramagnetic Gibbs measures) for 

equation (144) are                                . See Figure  5.3.3. 

 

 

 

 

 

 

 

 

 

Note that                            and                         

 . Then, the fixed points                      are stable and the  

corresponding paramagnetic measures for this points are extreme. 

 

 

 

 

 

 
Figure  5.3.3. The  existence of 3 translation-invariant paramagnetic  

phases for model (137)  when     ,       and            .    
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Chapter Six 

Conclusion and Comments 

 

 In this thesis, we have solved five different models of lattice spin systems. In the 

first model, we have obtained the set of Gibbs states for Ising-Vannimenus model 

on a Cayley tree of order three with TPNNN interaction. We have constructed the 

set of recurrence equations corresponding for the model and satisfying 

consistency condition (14). In addition, We have studied and analyzed the 

existence of translation-invariant measures by finding the fixed points for the 

operator   (40) defined on the set    {                                  }  

We have concluded that under accurate conditions on the coupling constants and 

the temperature, it's possible to find three translation-invariant Gibbs measures , 

two of them are extreme one's . As a result, the phase transition exists.  

In the second model, the same strategy in the first model has been used to explain 

the existence of translation invariant Gibbs measures for the Vannimenus model 

on Cayley tree of order four with OLNNN interactions. We have concluded that 

If 
    

 
   , and under specific conditions on   and      the phase transition exists  

with at most 3 translation invariant phases . 

Finally, three Potts Models have been analyzed such that the existence of 

translation-invariant paramagnetic phases is proved. Firstly, we have analyzed the   

Potts model with NN and TPNNN Interactions on a Third-order Cayley Tree with 

  State Space. By using partition function method, we have concluded that for 

      where     
  

   
, there exist 3 paramagnetic phases , i.e., the phase 

transition exists. In addition, the existence of 2-periodic Gibbs measures for this 

model has been proved. The second model is the same as the first one with     

and OLNNN interactions on Cayley tree of order two, the existence of phase 
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transition has been proved. The third model is a development for the second one 

on a Cayley tree of order three with OL 3-tuple interactions. We conclude that if 

  
  

             
      , then there exist 3 paramagnetic phases (Phase 

transition). 

Describing the set of all Gibbs measures corresponding to a given Hamiltonian is 

still a great problem. The complete description for this set has not been done yet, 

even for simple Hamiltonians. Although we have analyzed the shifting-invariant 

Gibbs measures corresponding for the Hamiltonians of our models, but there are 

still many unsolved problems related to these models which are suggested as a 

possible future work: 

1) Defining the operator   on a different set and finding the corresponding Gibbs 

measures (this includes invariant and non-invariant sets). 

2) Finding all periodic Gibbs measures corresponding to our models. 

3) Constructing the phase diagrams for the models in this thesis.  

4) Developing the models for arbitrary order Cayley tree. 

5) Developing the first and second models for a memory of length n,    . 

6) The results obtained in our thesis can inspire to study Ising and Potts models over 

multi-dimensional lattices or the grid   . 

7) Trying to relate our results with physical or biological applications. 
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Appendix 

  

 Analysis of the second derivative for the function in equation (45) 
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 Analysis of equation (63) 

 
    In[1]:=                                                                    

                                                                                          

                                             

 

    Out[1]=  

(0<c< 0.454 &&((b==Root[-25+14c4-25 c8+(1+34 c4+c8) #14&,2]&&a>0&&(x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,1]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 
c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) 
#13+2 a8 b4 c4 #14&,3]))||(Root[-25+14 c4-25 c8+(1+34 c4+c8) #14&,2]<b<Root[-4 
c2+(-1-c4) #12+2 c2 #14&,2]&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-
a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 
c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,1]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 
c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 
a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,2]||x==Root[2 b4 c4+(5 a2 
b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 
c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,3]||x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,4]))||(b==Root[-4 c2+(-1-c4) #12+2 c2 #14&,2]&&a>0&&(x==Root[2 b4 c4+(5 a2 
b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 
c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,1]||x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,2]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 
c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) 
#13+2 a8 b4 c4 #14&,4]))||(Root[-4 c2+(-1-c4) #12+2 c2 
#14&,2]<b<1/c&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) 
#1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 
b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,1]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 
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c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 
b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,2]))||(b>=1/c&&a>0&&(x==Root[2 b4 
c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 
c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,3]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 
c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) 
#13+2 a8 b4 c4 #14&,4])))) || 

( 0.454 <=c< 0.669 &&((b==Root[-4 c2+(-1-c4) #12+2 c2 #14&,2]&&a>0&&x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,1])||(Root[-4 c2+(-1-c4) #12+2 c2 #14&,2]<b<1/c&&a>0&&(x==Root[2 b4 c4+(5 
a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 
b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,1]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 
c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) 
#13+2 a8 b4 c4 #14&,2]))||(b>=1/c&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 
b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 
c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,3]||x==Root[2 b4 c4+(5 a2 b2 
c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 
c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,4]))))|| 

(c== 0.669 &&((b==1/c&&a>0&&x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 
b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 
c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,3])||(b>1/c&&a>0&&(x==Root[2 b4 c4+(5 
a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 
b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,3]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 
c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) 
#13+2 a8 b4 c4 #14&,4]))))||( 0.669 <c<= 1.50 &&((b==Root[-4 c2+(-1-c4) #12+2 
c2 #14&,2]&&a>0&&x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 
b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 
c6) #13+2 a8 b4 c4 #14&,3])||(b>Root[-4 c2+(-1-c4) #12+2 c2 
#14&,2]&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 
b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 
c6) #13+2 a8 b4 c4 #14&,3]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 
c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 
a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,4]))))|| 

( 1.50 <c<= 2.20 &&((b==Root[-4 c2+(-1-c4) #12+2 c2 #14&,2]&&a>0&&x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,1])||(Root[-4 c2+(-1-c4) #12+2 c2 #14&,2]<b<c&&a>0&&(x==Root[2 b4 c4+(5 a2 
b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 
c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,1]||x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,2]))||(b>=c&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) 
#1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 
b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,3]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 
c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 
b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,4])))) 
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||(c> 2.20 &&((b==Root[-25+14 c4-25 c8+(1+34 c4+c8) #14&,2]&&a>0&&(x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,1]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 
c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) 
#13+2 a8 b4 c4 #14&,3]))||(Root[-25+14 c4-25 c8+(1+34 c4+c8) #14&,2]<b<Root[-4 
c2+(-1-c4) #12+2 c2 #14&,2]&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-
a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 
c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,1]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 
c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 
a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,2]||x==Root[2 b4 c4+(5 a2 
b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 
c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,3]||x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,4]))||(b==Root[-4 c2+(-1-c4) #12+2 c2 #14&,2]&&a>0&&(x==Root[2 b4 c4+(5 a2 
b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 
c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,1]||x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,2]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 
c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) 
#13+2 a8 b4 c4 #14&,4]))||(Root[-4 c2+(-1-c4) #12+2 c2 
#14&,2]<b<c&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 
a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 
b6 c6) #13+2 a8 b4 c4 #14&,1]||x==Root[2 b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 
c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 
a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,2]))||(b>=c&&a>0&&(x==Root[2 b4 c4+(5 a2 b2 
c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 b8 c4+2 a4 b4 
c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 #14&,3]||x==Root[2 
b4 c4+(5 a2 b2 c2-a2 b6 c2+5 a2 b2 c6-a2 b6 c6) #1+(2 a4 b4+8 a4 c4+4 a4 b4 c4-4 a4 
b8 c4+2 a4 b4 c8) #12+(5 a6 b2 c2-a6 b6 c2+5 a6 b2 c6-a6 b6 c6) #13+2 a8 b4 c4 
#14&,4])))) 

 

 For determine the value of Root (like                      

          ),we use the following code 

 

In[2]:=                                  

 

  Out[2]=    {   
 

 
√  

      
√         

  }  {  
 

 
√  

      
√         

  }  

      
 

 
√  

  
    

√         

  
     

 

 
√  

  
    

√         

  
   

    Since we deal with positive roots we choose  

  
 

 
√  

  
    

√         
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 Analysis of Example 4.5.1 

 
In[1]:=        
 

Out[1]=     

In[2]:=                                                     
 

Out[2]=                     

In[3]:=         

Out[3]=      
 

In[4]:=  Reduce[5 a4 c8 x4-3a4 b8 c8 x4+16a3 b c5 x3(1+a2 x2)-8a3 b7 c5 x3(1+a2 x2)+8a 

b3 c x(c4+6a2 x2+6a4 x4+a6 c4 x6)+6b2(3a2 c4 x2+8a4 c2 x4+3a6 c4 x6)-2b6(3a2 c4 x2+8a4 

c2x4+3a6 c4 x6)+b4(36a4 x4+16c2(a2 x2+a6 x6)+c8(1+a8 x8))==0 ,x,PositiveReals] 

 
Out[4]=                                                               

                                                                     

                                                                  

                                                          ||   

                                                                       

                                                                   

                                                                          

                                     

 

In[5]:=   
                                    

                                    
    

Out[5]= 
                                                                                                                                            

                                                                                                
 

In[6]:=            

                                                                                                                                            

                                                                                               
   

Out[6]=

  
                                                                                                                                            

                                                                                                
  

 

In[7]:=             *                                                     

                                                                          

                                                                  

                                                          +                     

Out[7]=                        

 

In[8]:=      *      *                                                     
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                                                          +                   + 

 

  Out[8]:=                       

 

 

 Analysis of the model 5.3  

 

 The positive roots for equation (143) 

In[1]:=

        
  (                                                                                                )

(               )
   

                                  

Out[1]=  

( 1.59 <b< 2.85 && ((d==Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-

46656 b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 46656 

b7) #1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,2]&&c>0&&x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,1]) || 

(d>Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 b6+(1119744 b-3685824 

b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) #1+(-186624-1150848 

b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 b6+291600 b7-15552 b8) 

#12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-436752 b5-533520 b6+358992 

b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 b2+601344 b3-6480 b4-340416 

b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-69696+8640 b+121536 b2-8640 b3-

189216 b4+23040 b5+52272 b6+26028 b7-31176 b8+4356 b9) #15+(44288+13248 b+11520 

b2-59280 b3-10944 b4+37872 b5-588 b6-3276 b7-8568 b8+2485 b9) #16+(3904-4032 b-

10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-1548 b7-1224 b8+848 b9) #17+(-6528-576 

b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-144 b7-72 b8+174 b9) #18+(-1280+960 b3-

240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) #110&,2]&&c>0&&(x==Root[36+24 d+4 

d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 

b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,1] || 
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x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 

b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12  b2 d #15+b3 d2 

#16&,2]))))  || 

(b== 2.85 &&((d==Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,4]&&c>0&&x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,1]) || 

(d > Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 b6+(1119744 b-

3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) #1+(-186624-

1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 b6+291600 b7-15552 

b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-436752 b5-533520 

b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 b2+601344 b3-6480 b4-

340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-69696+8640 b+121536 b2-

8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 b8+4356 b9) #15+(44288+13248 

b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 b7-8568 b8+2485 b9) #16+(3904-

4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-1548 b7-1224 b8+848 b9) #17+(-

6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-144 b7-72 b8+174 b9) #18+(-

1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) #110&,4]&&c>0&&(x==Root[36+24 

d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 

d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,1] || 

x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 

b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 

#16&,2])))) ||  

( 2.85 <b<4&&((d==Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,2]&&c>0&&x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 
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#15+b3 d2 #16&,1])||(d>Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,2]&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,1]||x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 

b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 

d #15+b3 d2 #16&,2])))) ||  

 

(4<=b< 4.60 &&((d==Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,2]&&c>0&&x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,5]) ||  

(Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 b6+(1119744 b-3685824 

b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) #1+(-186624-1150848 

b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 b6+291600 b7-15552 b8) 

#12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-436752 b5-533520 b6+358992 

b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 b2+601344 b3-6480 b4-340416 

b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-69696+8640 b+121536 b2-8640 b3-

189216 b4+23040 b5+52272 b6+26028 b7-31176 b8+4356 b9) #15+(44288+13248 b+11520 

b2-59280 b3-10944 b4+37872 b5-588 b6-3276 b7-8568 b8+2485 b9) #16+(3904-4032 b-

10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-1548 b7-1224 b8+848 b9) #17+(-6528-576 

b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-144 b7-72 b8+174 b9) #18+(-1280+960 b3-

240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) #110&,2]<d<=1&&c>0&&(x==Root[36+24 d+4 

d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 

b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,5]||x==Root[36+24 

d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 

d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,6])) ||  
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(d>1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) 

#12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,1] ||  

x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 

b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 

#16&,2])))) ||  

 

(b== 4.60 &&((d==Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,1]&&c>0&&x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,5]) || (Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,1]<d<=1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-

12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 

b2 d #15+b3 d2 #16&,5] || x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 

b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 

d) #14+12 b2 d #15+b3 d2 #16&,6])) ||(d>1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 

d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) 

#13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,1]||x==Root[36+24 d+4 

d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 

b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,2])))) ||  

 

( 4.60 <b<9& &((d==Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 
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b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,1]&&c>0&&x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,3]) || (Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,1]<d<Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 b6+(1119744 b-

3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) #1+(-186624-

1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 b6+291600 b7-15552 

b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-436752 b5-533520 

b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 b2+601344 b3-6480 b4-

340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-69696+8640 b+121536 b2-

8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 b8+4356 b9) #15+(44288+13248 

b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 b7-8568 b8+2485 b9) #16+(3904-

4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-1548 b7-1224 b8+848 b9) #17+(-

6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-144 b7-72 b8+174 b9) #18+(-

1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) #110&,2]&&c>0&&(x==Root[36+24 

d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 

d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 

#16&,3]||x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) 

#12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,4]))||(Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,2]<=d<=1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 
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d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) 

#14+12 b2 d #15+b3 d2 #16&,5]||x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 

b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 

d) #14+12 b2 d #15+b3 d2 #16&,6])) || (d>1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 

d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) 

#13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,1]||x==Root[36+24 d+4 

d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 

b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d #15+b3 d2 #16&,2]))))  ||  

 

(9<=b< 265. &&((0<d<Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,2]&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,3] ||  x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-

12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 

b2 d #15+b3 d2 #16&,4]))||(Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,2]<=d<=1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 

d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) 

#14+12 b2 d #15+b3 d2 #16&,5] || x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-

36 b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 

b3 d) #14+12 b2 d #15+b3 d2 #16&,6])) ||  

(d>1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) 

#12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,1]||x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 

b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 

d #15+b3 d2 #16&,2])))) ||  



 
 

126 
 

(b>= 265. &&((0<d<Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,4]&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 

d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,3]||x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 

b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 

d #15+b3 d2 #16&,4]))||(Root[-419904 b2+1306368 b3-1399680 b4+559872 b5-46656 

b6+(1119744 b-3685824 b2+5365440 b3-4758912 b4+2612736 b5-699840 b6+46656 b7) 

#1+(-186624-1150848 b+3748032 b2-3499200 b3+451008 b4+1613520 b5-1251936 

b6+291600 b7-15552 b8) #12+(324864+103680 b-393984 b2-1093824 b3+1710720 b4-

436752 b5-533520 b6+358992 b7-55728 b8+1728 b9) #13+(-108864+48384 b-288576 

b2+601344 b3-6480 b4-340416 b5+34560 b6+166428 b7-60480 b8+4212 b9) #14+(-

69696+8640 b+121536 b2-8640 b3-189216 b4+23040 b5+52272 b6+26028 b7-31176 

b8+4356 b9) #15+(44288+13248 b+11520 b2-59280 b3-10944 b4+37872 b5-588 b6-3276 

b7-8568 b8+2485 b9) #16+(3904-4032 b-10944 b2+7296 b3+7200 b4+7632 b5-6000 b6-

1548 b7-1224 b8+848 b9) #17+(-6528-576 b-1152 b2+6048 b3+720 b4+576 b5-1800 b6-

144 b7-72 b8+174 b9) #18+(-1280+960 b3-240 b6+20 b9) #19+(-64+48 b3-12 b6+b9) 

#110&,4]<=d<=1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 

d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) 

#14+12 b2 d #15+b3 d2 #16&,5]||x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 

b2+36 d-12 b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 

d) #14+12 b2 d #15+b3 d2 #16&,6])) ||  

(d>1&&c>0&&(x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 b2 d) 

#12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 d 

#15+b3 d2 #16&,1]||x==Root[36+24 d+4 d2+(144+48 d) #1+(108+144 b-36 b2+36 d-12 

b2 d) #12+(144 b+24 d-12 b3 d+8 d2-4 b3 d2) #13+(36 b2+36 b d-12 b3 d) #14+12 b2 

d #15+b3 d2 #16&,2])))) 

 

 Analysis of the second derivative for the function in equation 

(142)  

 

In[2]:=         
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Out[2]= (1<b< 1.22 && ((Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) 

#1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-

124416 b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) 

#17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 

b3+192 b4+96 b5+32 b6) #19&,5]<d<(9-3 b)/(1+b)&&c>0&&Root[108-36 b+24 d-24 b 

d-4 d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 

d3) #1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-

18 b2 d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 

d3) #14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,1]<x<Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,2]) || 

(d>=(9-3 b)/(1+b)&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-

18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-

36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,2]))) || 

(b== 1.22 && ((Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-

373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 

b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) 

#17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 

b3+192 b4+96 b5+32 b6) #19&,4]<d<(9-3 b)/(1+b)&&c>0&&Root[108-36 b+24 d-24 b 

d-4 d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 

d3) #1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-

18 b2 d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 

d3) #14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,1]<x<Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,2])|| 

(d>=(9-3 b)/(1+b)&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-

18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-

36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,2]))) ||  

( 1.22 <b< 1.29 &&((Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) 

#1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-
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124416 b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) 

#17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 

b3+192 b4+96 b5+32 b6) #19&,4]<d<=Root[-1679616 b2+(2239488 b+1119744 

b2+1679616 b3) #1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) 

#12+(373248-466560 b-124416 b2-762048 b3+373248 b4+104976 b5) 

#13+(124416+787968 b+59616 b2+360288 b3+301968 b4-27216 b5-6561 b6) #14+(-

100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-918 b6) #15+(-28080-34848 

b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) #16+(1152+864 b-864 b2-1656 

b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 

b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 b6) #19&,5]&&c>0&&Root[108-36 

b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-

2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 

d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b 

d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,3]<x<Root[108-36 b+24 d-24 b d-4 

d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4])|| 

(Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-

27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) 

#16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 

b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 

b6) #19&,5]<d<(9-3 b)/(1+b)&&c>0&&Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,1]<x<Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,2]) 

||(d>=(9-3 b)/(1+b)&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 

d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 

d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,2])))|| 

(b== 1.29 &&((Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-

373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 
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b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864 b-864b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 

b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 

b5+32 b6) #19&,4]<d<(9-3 b)/(1+b)&&c>0&&Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,3]<x<Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4]) || 

(d==(9-3 b)/(1+b)&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-

18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-

36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,4]) || 

(d>(9-3 b)/(1+b)&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-

18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-

36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,2]))) || 

( 1.29 <b<= 1.55 &&((Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) 

#1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-

124416 b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 

b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 

b5+32 b6) #19&,4]<d<(9-3 b)/(1+b)&&c>0&&Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,3]<x<Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4])|| 

((9-3 b)/(1+b)<=d<=Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-

373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 

b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 
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b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864 b-864 b2-1656b3+432 b4+2160 b5+1800 b6) #17+(400+1056 

b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 

b5+32 b6) #19&,5]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-

18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-

36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,4]) || 

 (d>Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-

27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) 

#16+(1152+864 b-864 b2-1656 b3+432b4+2160 b5+1800 b6) #17+(400+1056 b+2112 

b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 

b6) #19&,5]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-

18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 

d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) 

#13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 

d2 #16&,2]))) || 

 ( 1.55 <b< 1.70 &&((Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) 

#1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-

124416 b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 

b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 

b5+32 b6) #19&,2]<d<(9-3 b)/(1+b)&&c>0&&Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,3]<x<Root[108-36 b+24 d-24 b d-4 d2-4 b 

d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4]) || 

((9-3 b)/(1+b)<=d<=Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-

373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 

b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 

b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 

b5+32 b6) #19&,3]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-
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18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-

36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,4])|| 

(d>Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-

27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918 b6) #15+(-28080-34848 b-63648b2-34128 b3-41616 b4-12816 b5+2943 b6) 

#16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 

b2+2368 b3+2112 b4+1056b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 b6) 

#19&,3]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-18 

b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 d+12 

d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) 

#13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 

d2 #16&,2]))) 

||( 1.70 <=b<= 1.80 &&(((9-3b)/(1+b)<d<=Root[-1679616 b2+(2239488 b+1119744 

b2+1679616 b3) #1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) 

#12+(373248-466560b-124416\b2-762048b3+373248 b4+104976 b5) #13+(124416+787968 

b+59616 b2+360288 b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 

b2+107784 b3-41040 b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-

41616 b4-12816 b5+2943 b6) #16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 

b6) #17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 

b2+224 b3+192 b4+96 b5+32 b6) #19&,3]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 

d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4])||(d>Root[-1679616 b2+(2239488 b+1119744 

b2+1679616 b3) #1+(-373248-2612736 b+746496b2-1306368 b3-629856 b4) 

#12+(373248-466560b-124416b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 

b+59616 b2+360288 b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 

b2+107784 b3-41040 b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-

41616 b4-12816 b5+2943 b6) #16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 

b6) #17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 

b2+224 b3+192 b4+96 b5+32 b6) #19&,3]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 

d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,2])))|| 

( 1.80 <b<=2 && (((9-3 b)/(1+b)<d<=Root[-1679616 b2+(2239488 b+1119744 

b2+1679616 b3) #1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) 

#12+(373248-466560b-124416b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 

b+59616 b2+360288 b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 

b2+107784 b3-41040 b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-
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41616 b4-12816 b5+2943 b6) #16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 

b6) #17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 

b2+224 b3+192 b4+96 b5+32 b6) #19&,1]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 

d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4]) || (d>Root[-1679616 b2+(2239488 

b+1119744 b2+1679616 b3) #1+(-373248-2612736 b+746496 b2-1306368 b3-629856 

b4) #12+(373248-466560b-124416b2-762048b3+373248b4+104976b5)               .  

#13+(124416+787968 b+59616 b2+360288 b3+301968 b4-27216 b5-6561 b6) #14+(-

100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-918 b6) #15+(-28080-34848 

b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) #16+(1152+864 b-864 b2-1656 

b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 

b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 b6) #19&,1]&&c>0&&0<x<Root[108-

36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 

d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 

b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 

d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,2]))) ||  

(2<b< 2.28 &&(((9-3 b)/(1+b)<d<1&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 

b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4])||(d==1&&c>0&&0<x<Root[128-64 b+(256-32 

b-32 b2) #1+(192+96 b-48 b2) #12+(64+112 b-16 b2) #13+(8+44 b+8 b2) #14+(6 b+6 

b2) #15+b2 #16&,6])||(1<d<=Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) 

#1+(-373248-2612736 b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-

124416 b2-762048 b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 

b3+301968 b4-27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 

b4-54432 b5-918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 

b5+2943 b6) #16+(1152+864b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 

b+2112 b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 

b5+32 b6) #19&,1]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-

18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-

36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 

b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) 

#15+b2 d2 #16&,4])|| 

(d>Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-

27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918b6) #15+(-28080-34848b-63648b2-34128b3-41616b4-12816b5+2943b6) #16+(1152+864 

b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 b2+2368 b3+2112 

b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 b6) 

#19&,1]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-18 

b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 d+12 
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d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) 

#13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 

d2 #16&,2])))|| 

(b== 2.28 &&(((9-3 b)/(1+b)<d<1&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 

b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4])|| 

(d==1&&c>0&&0<x<Root[128-64 b+(256-32 b-32 b2) #1+(192+96 b-48 b2) 

#12+(64+112 b-16 b2) #13+(8+44 b+8 b2) #14+(6 b+6 b2) #15+b2 #16&,6])|| 

(1<d<=Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-

27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918b6) #15+(-28080-34848b-63648b2-34128b3-41616b4-12816b5+2943b6) #16+(1152+864 

b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 b2+2368 b3+2112 

b4+1056b5+400b6#18+(32+96b+192b2+224b3+192b4+96b5+32b6) #19&,3]             .            

&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 

d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 d+12 d2-12 b 

d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 

d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4]) || 

(d>Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496b2-1306368b3-629856b4) #12+(373248-466560 b-124416 b2-762048 b3+373248 

b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-27216 b5-6561 

b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-918 b6) #15+(-

28080-34848 b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) #16+(1152+864 b-864 

b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 

b5+400b6) #18+(32+96b+192b2+224b3+192b4+96b5+32 b6) #19&,3]&&c>0&&0<x<Root[108-

36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 

d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 

b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 

d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,2])))  || 

( 2.28 <b<=3&&(((9-3 b)/(1+b)<d<1&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-

4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) 

#1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 

d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) 

#14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4])|| 

(d==1&&c>0&&0<x<Root[128-64 b+(256-32 b-32 b2) #1+(192+96 b-48 b2) 

#12+(64+112 b-16 b2) #13+(8+44 b+8 b2) #14+(6 b+6 b2) #15+b2 #16&,6])|| 

(1<d<=Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-
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27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) 

#16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 

b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 

b6) #19&,1]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-

18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 

d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) 

#13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 

d2 #16&,4]) 

||( d>Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-

27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918 b6) #15+(-28080-34848 b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) 

#16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 

b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 

b6) #19&,1]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-

18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 

d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) 

#13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 

d2 #16&,2])))|| 

(b>3&&((0<d<1&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b 

d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 

d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) 

#13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 

d2 #16&,4])|| 

(d==1&&c>0 && 0<x<Root[128-64 b+(256-32 b-32 b2) #1+(192+96 b-48 b2) 

#12+(64+112b-16b2) #13+(8+44 b+8b2) #14+(6 b+6b2) #15+b2 #16&,6])||(1<d<=Root[-

1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 b+746496 b2-

1306368 b3-629856 b4 #12+(373248-466560 b-124416 b2-762048 b3+373248 b4+104976 

b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-27216 b5-6561 b6) #14+(-

100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-918 b6) #15+(-28080-34848 

b-63648 b2-34128 b3-41616 b4-12816 b5+2943 b6) #16+(1152+864 b-864 b2-1656 

b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 b2+2368 b3+2112 b4+1056 b5+400 

b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 b6) #19&,1]&&c>0&& 0<x<Root[108-

36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-18 b2 d-12 d2-12 b d2-12 b2 d2-2 

d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 d+12 d2-12 b d2-12 b2 d2) #12+(72 

b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) #13+(36 b d+6 d2+6 b d2+6 b2 d2+2 

d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 d2 #16&,4])|| 

(d>Root[-1679616 b2+(2239488 b+1119744 b2+1679616 b3) #1+(-373248-2612736 

b+746496 b2-1306368 b3-629856 b4) #12+(373248-466560 b-124416 b2-762048 

b3+373248 b4+104976 b5) #13+(124416+787968 b+59616 b2+360288 b3+301968 b4-

27216 b5-6561 b6) #14+(-100224+98496 b-94176 b2+107784 b3-41040 b4-54432 b5-

918 b6) #15+(-28080-34848 b-63648b2-34128 b3-41616b4-12816 b5+2943 b6) 
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#16+(1152+864 b-864 b2-1656 b3+432 b4+2160 b5+1800 b6) #17+(400+1056 b+2112 

b2+2368 b3+2112 b4+1056 b5+400 b6) #18+(32+96 b+192 b2+224 b3+192 b4+96 b5+32 

b6) #19&,1]&&c>0&&0<x<Root[108-36 b+24 d-24 b d-4 d2-4 b d2+(216+54 d-18 b d-

18 b2 d-12 d2-12 b d2-12 b2 d2-2 d3-2 b d3-2 b2 d3) #1+(108+108 b+72 d-36 b2 

d+12 d2-12 b d2-12 b2 d2) #12+(72 b+48 d+24 b d-18 b2 d+16 d2+16 b d2+2 b2 d2) 

#13+(36 b d+6 d2+6 b d2+6 b2 d2+2 d3+2 b d3+2 b2 d3) #14+(6 b d2+6 b2 d2) #15+b2 

d2 #16&,2]))) 

 

 Analysis of Example 5.3.3 
 

In[1]:=       

Out[1]=    
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Out[3]=                                            ||   
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In[4]:=      

Out[4]=  36 

 

In[5]:=                                                                          

                                                                

                                                                               

          

 Out[5]=                      ||                      

 

In[6]:=             
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Out[6]= 
                                                                                                        

                   
 

In[7]:=                            

Out[7] =            

In[8]:=                           

Out[8]=          

In[9]:=                                              

 Out[9]=                     

In[10]:=           

Out[10]=         

In[11]:=          
                          

                    
                  

Out[11]=                      ||                     ||                      

In[12]:=          
                          

                    
                  

Out[11]=                      ||                     ||                      
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In[12]:= 

      
                                                           

               
               

Out[12]= 
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Out[13] = 

 

In[14]:=                 

Out[14]=          

In[15]:=                 

Out[15]=          
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 Simplifying the recurrence equations  

Example : the simplifying process for equation (83) 
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