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Modeling of Biological Population Using Fuzzy Differential Equations: Fuzzy 

Predator-Prey Models and Numerical Solutions 

By: Doa’a Farekh 

Supervised by: Prof. Dr. Saed Mallak and Prof. Dr. Basem Attili 

Abstract 

This thesis considers the application of fuzzy differential equations in modeling of 

predator and prey populations. When determining the initial populations of 

predator and prey, uncertainty can arise. We study a predator-prey model with 

different fuzzy initial populations using many cases of fuzzy numbers. The 

uncertainty can also arise when determining the birth and death rates of prey and 

predator, so we construct a fuzzy predator-prey model of fuzzy parameters. To the 

best of our knowledge, it is the first time to explore a fuzzy predator-prey model 

with functional response 𝑎𝑟𝑐𝑡𝑎𝑛(𝑎𝑥) and we study it with fuzzy initial populations 

and then with fuzzy parameters. We use generalized Hukuhara derivative and solve 

all models numerically by Runge-Kutta method. Simulations are made and 

graphical representations are also provided to show the evolution of both 

populations over time.  

At the end, we discuss the stability of the equilibrium points. From the simulations 

and graphs, we conclude that the fuzzy solution is not always better than the crisp 

solution biologically and sometimes they are unacceptable in fuzzy logic and some 

equilibrium points are unstable. We note that the solutions with triangular fuzzy 

numbers and shaped triangular fuzzy number are better than those with trapezoidal 

fuzzy numbers. As the initial populations of the prey and predator are closer to 

each other, the solution will be better since the lower and upper bounds are equal 

and positive. When we fuzzify the parameters of predator-prey model, we 

sometimes don’t get a good fuzzy solution. However, as the endpoints of fuzzy 

numbers are closer, the solution is periodic and the equilibrium points are stable. 
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الفريسة  و ذج المفترسامجتمعات حيوية باستخدام المعادلات التفاضلية الضبابية : نم نمذجة نمو
 والحلول العددية ةالضبابي

 دعاء فرخ :إعداد
 أ.د. باسم عتيليو  أ.د. سائد ملاكشراف: إب

 الملخص

 

. الفريسةمفترس و الناول هذه الأطروحة تطبيق المعادلات التفاضلية الضبابية في نمذجة نمو مجتمعات تت
 نتناولبالتالي و لهذه المجتمعات  الشروط الابتدائيةمن الممكن الحصول على بعض الغموض عند تحديد 

مختلفة  باستخدام حالات مختلفة لمجتمعاتهمضبابية شروط ابتدائية مع  وندرسه لفريسةو ا لمفترسنموذجًا ل
د تحديد معدلات الولادة والوفاة للفريسة و . كما يمكن أن ينشأ بعض الغموض عنالأرقام الغامضة من

على حد علمنا ، هذه  .بدراسة النماذج الناتجة نقومهذه المعدلات اعداد ضبابية و  نفرض انالمفترس ، لذلك 
تحويل ب ندرسهو  فريسة جديد بدلالة اقتران معكوس الظل و  مفترسهي المرة الأولى لاستكشاف نموذج 

 مشتقة نستخدم. في جميع الحالات أولية ضبابية اعدادم والمعاملات الى الشروط الابتدائية لمجتمعاته
(Generalized Hukuhara) هذه الحلول عدديًا بطريقة ونجدللنماذج،  لايجاد الحلول (Runge-Kutta) 
في جداول ورسومات بيانية لاظهار تطور نمو مجتمعات الفريسة  من خلال المحاكاة نستعرض النتائجو 

( لجمبع equilibrium pointsاستقرار نقاط الاتزان )ناقش مرور الوقت. في النهاية ، ن والمفترس مع
 النماذج.

أن النموذج الضبابي ليس دائمًا أفضل من النموذج العادي نستنتج بعد مناقشة النتائج ومقارنتها ببعضها  
غير مستقرة. وتبين ان  تكون زان بيولوجيًا وأحيانًا يكون غير مقبول بالمنطق الضبابي كما ان بعض نقاط الات

أفضل من الأرقام الضبابية شبه المنحرفة ، وشبه المثلثية الحلول مع استخدام الأرقام الضبابية المثلثية 
الحلول أفضل بحيث انه تكون  تكون الاعداد الأولية لمجتمعات الفريسة والمفترس متقاربة ،  عندما تكون و 

وية وموجبة مع مرور الزمن اي انها مقبولة بيولوجيا ومن قبل المنطق الحدود الدنيا والعليا للحلول متسا
، لم نحصل على حل ضبابي عداد ضبابيةأنها أ  فرض معاملات نموذج الفريسة والمفترسنعندما الضبابي. 

جيد في بعض الأوقات. ومع ذلك، كلما كانت أطراف الأعداد الاولية الضبابية أقرب الى المركز، يكون 
 .ا ونقاط الاتزان مستقرةالحل دوريً 

 



1 
 

Chapter 1 

Introduction 

 Fuzzy set theory and its applications have become a subject of increasing interest 

for many authors. Many articles in different areas were published since introducing 

the concepts of Fuzzy sets and Probability Measure of Fuzzy Events by Zadeh in 

1965 [33-34]. 

The basic arithmetic structure of fuzzy numbers was later developed by Zadeh 

[33], Kaufman and Gupta [19], Klir and Yuan [20] and Zimmerman [35]. Also the 

concepts of derivative of the fuzzy valued functions were introduced by Bede and 

Gal [5], Bede and Stefanini [7-9], Cano and Flores [11], Gomes and Barros [16], 

Pirzada and Vakaskar [29], Puri and Ralescu [30] and Stefanini [31]. 

Puri and Ralescu [30] defined the derivative for fuzzy functions based on the 

concept of Hukuhara derivative for set-valued functions. The first theorem of 

existence using this derivative was proposed by Kaleva [17]. In [29], Pirzada and 

Vakaskar discussed the existence of Hukuhara differentiability of fuzzy valued 

functions. But it soon appeared that the Hukuhara derivative has a shortcoming 

which fuzzifies the solution as time goes on. To overcome this situation and to 

solve this shortcoming, Bede and Gal [5] introduced and studied the generalized 

concepts of differentiability and as a result the concept of strongly generalized 

derivative was introduced. 

Differential equations are commonly used for modeling real world phenomena. 

Unfortunately, every time uncertainty can appear with real world problems; the 

uncertainty can arise from deficient data, measurement errors or when determining 

initial conditions. Fuzzy set theory is a powerful tool to overcome these problems. 

The term fuzzy differential equation was used for the first time in 1980 by Kandel 

and Byatt [18]. Later on, many authors defined fuzzy differential equations with a 

derivative defined on Hukuhara derivative and its generalizations, see [5-

8,11,15,17]. 

An initial value problem (IVP) is a system of ordinary differential equations 

together with an initial condition: 

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡))  , 𝑥(𝑡0) = 𝑥0 

where 𝑓 is a function of 𝑡 and 𝑥 𝑎𝑛𝑑 𝑥0 is an initial value and 𝑥′(𝑡) is derivative of 

function 𝑥 with respect to 𝑡. Assume that the initial value problem has an uncertain 
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initial value modeled by a fuzzy interval, then we have the following initial value 

problem: 

𝑋′(𝑡) = 𝑓(𝑡, 𝑋(𝑡)), 𝑋(𝑡0) = 𝑋0 

where 𝑓: [0, 𝑇] × 𝑅𝐹
𝑛 → 𝑅𝐹

𝑛 is a fuzzy interval-valued function and 𝑋0 ∈ 𝑅𝐹
𝑛, 𝑅𝐹

𝑛 is 

the family of all fuzzy subsets of 𝑅𝑛. 

    Numerical methods have been developed to solve fuzzy differential equation, for 

example Euler's Method and Runge-Kutta Method, see [1,2,13,21,26]. 

Mathematical biology is one example employing mathematical tools to model 

biological phenomena, such as epidemiology problems, population dynamics, 

ecological systems and genetics, see [14]. As mentioned before, uncertainties are 

present in the process of modeling. To deal with uncertainties, we use fuzzy 

differential equations. The employment of fuzzy sets theory is present in many 

studies in biological problems, see for example [1-3], [15] and [27-28]. 

     One of the mathematical biology models is the predator-prey model (predation), 

the predation is amongst the oldest in ecology. The Italian mathematician Volterra 

is said to have developed his ideas about predation from watching the rise and fall 

of Adriatic fishing fleets. When fishing was good, the number of fishermen 

increased, drawn by the success of others. After a time, the fish declined, perhaps 

due to over-harvest, and then the number of fishermen also declined. After some 

time, the cycle repeated [32].  

      An organism which feeds on another organism for their food is called predator 

while the organism that is fed upon is termed as the prey. This kind of interaction 

between the prey and predator is known as predation. Typically, a predator tends to 

be larger than that of the prey, and hence they consume many preys during their 

life cycle. During the act of predation often the death of prey will occur due to the 

absorption of the prey’s tissue by the predator. Typical examples of predation are 

bats eating the insects, snakes eating mice, and the whales eating the krill [32]. 

     Without the prey the predators will decrease, and without the predator the prey 

will increase. A mathematical model showing how an ecological balance can be 

maintained when both are present was proposed in 1925 by Lotka and Volterra. 

Let 𝑋(𝑡) and 𝑌(𝑡) be the population of prey and predator, respectively, at time 𝑡. 

We have the following assumptions: 

1. In the absence of the predator the prey grows without bound, thus    
𝑑𝑋

𝑑𝑡
=

𝑎𝑋, 𝑎 > 0 for 𝑌 = 0. 
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2.  In the absence of the prey the predator dies out, thus 
𝑑𝑌

𝑑𝑡
= −𝑐𝑌,   𝑐 >

0 for 𝑋 = 0.  
3. The increase in the number of predators is wholly dependent on the food 

supply (the prey) and the prey are consumed at a rate proportional to the 

number of encounters between predators and prey. Encounters decrease the 

number of prey and increase the number of predators. A fixed proportion of 

prey is killed in each encounter, and the rate of population growth of the 

predator is enhanced by a factor proportional to the amount of prey 

consumed.  

As a consequence, we have the equations: 

𝑑𝑋

𝑑𝑡
= 𝑎𝑋 − 𝑏𝑋𝑌  

𝑑𝑌

𝑑𝑡
= −𝑐𝑌 + 𝑑𝑋𝑌                                                    (1) 

The constants 𝑎, 𝑏, 𝑐 and 𝑑 are positive, 𝑎 and 𝑐 are the growth rate of the prey and 

the death rate of the predator, respectively, and  𝑏 and 𝑑 are measures of the effect 

of the interaction between the two species. System (1) is called the simplest model 

of predator –prey.  

    What happens for given initial values of 𝑌 >  0 and 𝑋 >  0? Will the predators 

eat all of their prey and in turn die out? Will the predators die out because of a too 

low level of prey and then the prey grows without bound? Will an equilibrium state 

be reached, or will a cyclic fluctuation of prey and predator occur?  [10]. 

     Many articles were published about predator-prey models that answer the 

previous questions in different cases, for example see [4,14]. 

Many authors have studied a predator-prey model which takes into account the 

uncertainty in the initial populations of predator and prey. In their works, the 

authors gave numerical solutions to differential equations with fuzzy initial 

conditions and some of them discussed the stability of the solutions [1-3], [24] and 

[28]. 

Ahmed and Baets [1] studied a predator-prey population model with fuzzy initial 

populations of predator and prey. This model was solved numerically by means of 

a 4th-order Runge-Kutta method. Simulations were made and  graphical 

representations were also provided to show the evolution of both populations over 
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time. In addition to that, the stability of the equilibrium points was also described 

and they obtained fuzzy stable equilibrium points. 

Ahmed and Hasan [2] solved the predator-prey model numerically by means of a 

fuzzy Euler method. The stability of the new fuzzy model was studied and was 

shown graphically in the fuzzy phase plane. At the beginning, they obtained 

unstable fuzzy equilibrium point. This problem arisen due to the cumulative errors 

generated in each step of the fuzzy Euler method. However, when they used a very 

small step size, the fuzzy equilibrium point became fuzzy stable. 

Akin and Oruc [3] used the concept of generalized differentiability to solve the 

Lotka–Voltera model and obtained graphical solutions. The uniqueness of the 

solution of a fuzzy initial value problem was lost when they used the strongly 

generalized derivative concept, this situation was considered as a disadvantage.  

Actually, it is not a disadvantage because researchers can choose the best solution 

which reflects better the behavior of the system under consideration. 

In this thesis, chapter 3, we study the fuzzy predator-prey model in [2] with 

different initial conditions, then give numerical and graphical solutions by using 

Runge-Kutta method in Matlab [25] and discuss the behavior and the stability of 

the solutions. Then we construct a predator and prey model with fuzzy birth and 

death rates. By using Matlab we make simulations and graphical representations 

and discuss the results. 

In chapter 4, we follow the footsteps of [4] where the researchers dealt with the 

general predator prey model of the form 

𝑋′(𝑡) = 𝑟𝑋(1 − 𝑋) − 𝑌 𝑡𝑎𝑛−1(𝑎𝑋) 

𝑌′(𝑡) = −𝑑𝑌 + 𝑠𝑌 𝑡𝑎𝑛−1(𝑎𝑋). 

Where 𝑋 and 𝑌 are the prey and the predator population sizes respectively, r, s, a 

and d are positive parameters. The researchers established the necessary and 

sufficient condition for the nonexistence of limit cycles of the model. For first 

time, we construct a numerical example for the model in [4], after number of 

attempts, to obtain a model satisfying the existence condition and has a periodic 

solution and then present the solution numerically and graphically. Then we 

convert the model to a fuzzy model with fuzzy initial conditions and discuss the 

results. Finally, we fuzzify the parameters of the model and find the numerical and 

graphical solutions.  

In chapter 5, we give some conclusions and remarks. 
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Chapter 2 

Basic Concepts 

 

 2.1 Preliminaries  

   Definition 1 A 𝑓𝑢𝑧𝑧𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 of some set Ω is defined by its membership 

function written 𝐴(𝑥) which produces values in [0,1] for all 𝑥 in Ω. That is 𝐴(𝑥) is 

a function mapping Ω into[0,1]. If  𝐴(𝑥) is always equal to one or zero then the 

subset 𝐴 is said to be crisp (classical) set. In the crisp case , 𝐴(𝑥) is called the 

characteristic function (or indicator function) and it is often denoted by 𝜒𝐴  . If  

𝜒𝐴(𝑥)= 0, then 𝑥 does not belong to 𝐴, whereas if 𝜒𝐴(𝑥) = 1, then 𝑥 belongs to 𝐴. 

The fuzzy subset is a generalization in which an element of  Ω has partial 

membership to 𝐴 characterized by a degree in the interval [0,1], when 𝐴(𝑥) =
0.6  we say the membership value of 𝑥 in 𝐴 is 0.6 . 

 

 Definition 2 Let 𝐴 be a fuzzy subset of Ω. An 𝛼 –  𝑙𝑒𝑣𝑒𝑙 of 𝐴, written [𝐴]𝛼 , is 

defined as {𝑥ϵ Ω: 𝐴(𝑥) ≥ 𝛼} for 0 < 𝛼 ≤ 1. [𝐴]0, the 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 of 𝐴 is defined as 

the closure of the union of all the [𝐴]𝛼, for 0 < 𝛼 ≤ 1. The 𝑐𝑜𝑟𝑒 of 𝐴 is the set of 

all elements in Ω with membership degree in 𝐴 equal to 1. 

  Definition 3 A 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑁 is a fuzzy subset of the real numbers satisfying: 

1.  ∃𝑥: 𝑁(𝑥) = 1.  

2. [𝑁]𝛼is a closed and bounded interval for 0 ≤ 𝛼 ≤ 1. 

The family of all fuzzy numbers will be denoted by 𝑅𝐹. 

     A special type of fuzzy numbers 𝑀 is called a triangular fuzzy number. 𝑀  is 

defined by three numbers 𝑎1 < 𝑎2 < 𝑎3 where: 

1. 𝑀(𝑥) = 1 at  𝑥 = 𝑎2. 

2. The graph of 𝑀(𝑥) on [𝑎1, 𝑎2] is a straight line from (𝑎1, 0) to (𝑎2, 1) and 

also on [𝑎2, 𝑎3] the graph is a straight line from (𝑎2, 1)  to (𝑎3, 0)  (3) 

𝑀(𝑥) = 0 for 𝑥 ≤ 𝑎1 or 𝑥 ≥ 𝑎3. 

We write 𝑀 = (𝑎1, 𝑎2, 𝑎3) for triangular fuzzy number 𝑀. If at least one of the 

graphs described above is not a straight line (curve), then 𝑀 is called triangular 

shaped fuzzy number and we write 𝑀 ≈ (𝑎1, 𝑎2, 𝑎3). 
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     Another special type of fuzzy numbers 𝑀 is called a trapezoidal fuzzy number. 

Here 𝑀 is defined by four numbers 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4 where: 

1. 𝑀(𝑥) = 1 on [𝑎2, 𝑎3]. 
2. The graph of 𝑀(𝑥) on [𝑎1, 𝑎2]  is a straight line from (𝑎1, 0) to (𝑎2, 1)  and 

also on [𝑎3, 𝑎4]  the graph is a straight line from (𝑎3, 1)  to (𝑎4, 0) (3) 

𝑀(𝑥) = 0 for 𝑥 ≤ 𝑎1 or 𝑥 ≥ 𝑎4.  

We write 𝑀 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) for trapezoidal  fuzzy number 𝑀. If at least one 

of the graphs described above is not a straight line (curve), then 𝑀 is called 

trapezoidal shaped fuzzy number and we write 𝑀 ≈ (𝑎1, 𝑎2, 𝑎3, 𝑎4).  If 𝑀(𝑥) =
𝑤 < 1 𝑜𝑛 [𝑎2, 𝑎3], then it is called a generalized trapezoidal fuzzy number. 

     A fuzzy number is determined by its alpha cuts, 𝛼 ∈ [0,1]. These alpha cuts 

satisfy the relation if 𝛼1 > 𝛼2 then [𝐴]𝛼1
⊂ [𝐴]𝛼2

, where 𝛼1, 𝛼2 ∈ [0,1]. More 

details, properties and operations can be found in [6,7], [10,11] and [20]. Other 

types of fuzzy numbers and their orders can be found in [12,13] and [22,23]. 

     If 𝑢 is a fuzzy number, then [𝑢]𝛼 = [𝑢1𝛼 , 𝑢2𝛼] where 𝑢1𝛼 = min {𝑠: 𝑠 ∈  [ ]u  } 

and 𝑢2𝛼 = max {𝑠: 𝑠 ∈  [ ]u  } for each 𝛼 ∈ [0,1]. 

   Theorem 1[6,7] Suppose that 𝑢1, 𝑢2: [0,1] → 𝑅 satisfy the following conditions: 

- 𝑢1 is a bounded increasing function and 𝑢2 is a bounded decreasing function 

with𝑢1𝛼 ≤ 𝑢2𝛼 at 𝛼 − 𝑙𝑒𝑣𝑒𝑙 = 1. . 

- for each 𝑘 ∈ (0,1], 𝑢1 and 𝑢2 are left-continuous functions at 𝛼 = 𝑘. 

- 𝑢1 and 𝑢2 are right-continuous at 𝛼 = 0. 

Then 𝑢: 𝑅 → [0,1] defined by 𝑢(𝑠) = sup {𝛼: 𝑢1𝛼 ≤ 𝑠 ≤ 𝑢2𝛼} is a fuzzy number 

with parameterization  [𝑢1𝛼 , 𝑢2𝛼]. 

Furthermore, if 𝑢: 𝑅 → [0,1] is a fuzzy number with parameterization [𝑢1𝛼 , 𝑢2𝛼], 
then the functions 𝑢1 and 𝑢2 satisfy the aforementioned conditions. 

Definition 4 The complete metric structure on the set of all fuzzy numbers 𝑅𝐹is 

given by the Hausdorff distance mapping 𝐷: 𝑅𝐹 × 𝑅𝐹 → [0, ∞) such that 𝐷(𝑢, 𝑣) =
𝑠𝑢𝑝0≤𝛼≤1 max{|𝑢1𝛼 − 𝑣1𝛼|, |𝑢2𝛼 − 𝑣2𝛼|} for arbitrary fuzzy numbers 𝑢 and 𝑣. 

   Theorem 2 [6-7] If 𝑢 and 𝑣 are two fuzzy numbers, then for each 𝛼 ∈ [0,1], we 

have: 

- [𝑢 + 𝑣]𝛼 = [𝑢]𝛼 + [𝑣]𝛼 = [𝑢1𝛼 + 𝑣1𝛼 , 𝑢2𝛼 + 𝑣2𝛼]. 
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-[𝜇𝑢]𝛼 = 𝜇[𝑢]𝛼 = [min{𝜇𝑢1𝛼 , 𝜇 𝑢2𝛼} , max{𝜇𝑢1𝛼 , 𝜇 𝑢2𝛼}]. 

- [𝑢𝑣]𝛼 = 

[min{𝑢1𝛼𝑣1𝛼, 𝑢1𝛼𝑣2𝛼, 𝑢2𝛼𝑣1𝛼 , 𝑢2𝛼𝑣2𝛼} , max{𝑢1𝛼𝑣1𝛼, 𝑢1𝛼𝑣2𝛼, 𝑢2𝛼𝑣1𝛼 , 𝑢2𝛼𝑣2𝛼}] . 

    Definition 5 Let  𝑢, 𝑣 ∈ 𝑅𝐹 . If there exists an element 𝑤 ∈ 𝑅𝐹 such that 𝑢 = 𝑣 +
𝑤, then 𝑤 is called the Hukuhara difference (H-difference) of 𝑢 and 𝑣, denoted by 

𝑢 ⊝ 𝑣. 

 Remark 1 

1.  This difference is not defined for pairs of fuzzy numbers such that the 

support of a fuzzy number has a bigger diameter than the one that is 

subtracted.  

2. The 𝐻-difference has the property  𝑢 ⊝ 𝑣 = {0}. So ,𝑢 ⊝ 𝑢 = {0}. 

3. (𝑢 + 𝑣) ⊝ 𝑣 = 𝑢 

4. The 𝐻-difference is unique and its α – level is [𝑢 ⊝ 𝑣]𝛼 = [𝑢1𝛼 −
𝑣1𝛼, 𝑢2𝛼−𝑣2𝛼] 

Many authors proposed two new definitions for difference of fuzzy numbers, 

which generalize the 𝐻-difference. 

    Definition 6 Let 𝑢, 𝑣 ∈ 𝑅𝐹 . The generalized Hukuhara difference (𝑔𝐻-

difference) 𝑢 ⊝𝑔𝐻 𝑣 = 𝑤, where 𝑤 ∈ 𝑅𝐹, if it exists, such that: (1) 𝑢 = 𝑣 + 𝑤 or 

(2) 𝑣 = 𝑢 − 𝑤. 

    Remark 2 

1. The 𝑔𝐻-difference is more general than 𝐻-difference. If the 𝐻-difference 

exists then the 𝑔𝐻-difference will exist and  𝑢 ⊝𝑔𝐻 𝑣 =  𝑢 ⊝ 𝑣. 

2. [𝑢 ⊝𝑔𝐻 𝑣]𝛼 = [𝑚𝑖𝑛{𝑢1𝛼 − 𝑣1𝛼, 𝑢2𝛼−𝑣2𝛼}, max {𝑢1𝛼 − 𝑣1𝛼 , 𝑢2𝛼−𝑣2𝛼}] 

3. The conditions for existence of  𝑢 ⊝𝑔𝐻 𝑣 = 𝑤 are 

 Case(1): 𝑐1𝛼 = 𝑢1𝛼 − 𝑣1𝛼 𝑎𝑛𝑑 𝑐2𝛼 = 𝑢2𝛼 − 𝑣2𝛼 with 

𝑐1𝛼 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 , 𝑐2𝛼 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔, 𝑐1𝛼 ≤ 𝑐2𝛼 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ∈ [0,1].  
 Case(2): 𝑐1𝛼 = 𝑢2𝛼 − 𝑣2𝛼 𝑎𝑛𝑑 𝑐2𝛼 = 𝑢1𝛼 − 𝑣1𝛼 with 

𝑐1𝛼 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 , 𝑐2𝛼 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔, 𝑐1𝛼 ≤ 𝑐2𝛼 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ∈ [0,1]. 
4. 𝑢 ⊝𝑔𝐻 𝑢 = {0}. 

5. (𝑢 + 𝑣) ⊝𝑔𝐻 𝑣 = 𝑢. 
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    Definition 7 Let  𝑢, 𝑣 ∈ 𝑅𝐹 . The generalized difference (𝑔-difference) 

𝑢 ⊝𝑔 𝑣 = 𝑤, where 𝑤 ∈ 𝑅𝐹, if it exists,  with 𝛼 − 𝑙𝑒𝑣𝑒𝑙 [𝑢 ⊝𝑔 𝑣]
𝛼

=

𝑐𝑙(∪𝛽≥𝛼 [𝑢]𝛽 ⊝𝑔𝐻 [𝑣]𝛽), ∀𝛼 ∈ [0,1]. 

   Remark 3  

1. The 𝑔-difference is more general than 𝑔𝐻-difference. If the 𝑔𝐻-difference 

exist, then the 𝑔-difference exists and it is the same. 

2. [𝑢 ⊝𝑔 𝑣]𝛼 = [ inf
𝛽≥𝛼

𝑚𝑖𝑛{𝑢1𝛼 − 𝑣1𝛼 , 𝑢2𝛼−𝑣2𝛼} , sup
𝛽≥𝛼

max {𝑢1𝛼 − 𝑣1𝛼 , 𝑢2𝛼−𝑣2𝛼}].  

Gomes and Barros in [16] showed that the g-difference is not defined for every 

pair of fuzzy numbers by a counter example. They also showed that a 

convexification is needed in order to assure that the result is a fuzzy number and 

they suggest a new definition for the g-difference using the convex hull (conv). 

 

[𝑢 ⊝𝑔 𝑣]
𝛼

= 𝑐𝑙(𝑐𝑜𝑛𝑣 ∪𝛽≥𝛼 [𝑢]𝛽 ⊝𝑔𝐻 [𝑣]𝛽), ∀𝛼 ∈ [0,1]. 

    Definition 8 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹 . 𝑓 𝑖𝑠 Hukuhara differentiable (𝐻- differentiable) 

at 𝑥0 if the limits: 

lim
ℎ→0+

𝑓(𝑥0+ℎ)⊝𝑓(𝑥0)

ℎ
 and lim

ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0−ℎ)

ℎ
 

exist and equal. 

   Remark 4  Let 𝑓, 𝑔: [𝑎, 𝑏] → 𝑅𝐹 

1. [𝑓′
𝐻

(𝑥0)]𝛼 = [𝑓′
1𝛼

(𝑥0), 𝑓′
2𝛼

(𝑥0)] 

2. Let 𝑓 and 𝑔 are 𝐻-differentiable, then  

 (𝑓 + 𝑔)′𝐻 = 𝑓′
𝐻

+ 𝑔′
𝐻

 

 (𝜆𝑓)′
𝐻

= 𝜆 𝑓′
𝐻

 

3. The 𝐻-difference doesn’t always exist, so the 𝐻-differentiable doesn’t 

always exist. 

4. Let 𝑓(𝑥) = 𝑐⨀𝑔(𝑥) where 𝑓: [𝑎, 𝑏] → 𝑅𝐹 , 𝑐 ∈ 𝑅𝐹,  for all 𝑥 ∈ [𝑎, 𝑏],  and 

let 𝑔: [𝑎, 𝑏] → 𝑅+ be differentiable at 𝑥0 ∈ [𝑎, 𝑏] ⊂ 𝑅+.  
If 𝑔′(𝑥0) > 0 then 𝑓 𝑖𝑠 𝐻 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 at 𝑥0 𝑤𝑖𝑡ℎ 𝑓′(𝑥) = 𝑐⨀𝑔′(𝑥). 

But if 𝑔′(𝑥) < 0 then 𝑓 is not 𝐻 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 [29]. 

 

   Definition 9 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹 . 𝑓 𝑖𝑠 strongly generalized differentiable (𝐺𝐻-

differentiable) at 𝑥0 if the limits of some pair of the following exist and equal: 

1. lim
ℎ→0+

𝑓(𝑥0+ℎ)⊝𝑓(𝑥0)

ℎ
 and lim

ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0−ℎ)

ℎ
 . 
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2. lim
ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0+ℎ)

−ℎ
 and lim

ℎ→0+

𝑓(𝑥0−ℎ)⊝𝑓(𝑥0)

−ℎ
 . 

3. lim
ℎ→0+

𝑓(𝑥0+ℎ)⊝𝑓(𝑥0)

ℎ
 and lim

ℎ→0+

𝑓(𝑥0−ℎ)⊝𝑓(𝑥0)

−ℎ
 . 

4. lim
ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0+ℎ)

−ℎ
 and lim

ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0−ℎ)

ℎ
 . 

More about Fuzzy calculus can be found in [15]. 

   Definition 10 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹 . 𝑓 is (1)-differentiable on [𝑎 , 𝑏] if 𝑓 is 

differentiable in the sense (1) of definition 9. Similarly, 𝑓 is (2)-differentiable on 
[𝑎 , 𝑏] if 𝑓 is differentiable in the sense (2) of definition 9. 

   Theorem 3 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹. Where [𝑓(𝑥)]𝛼 = [𝑓1𝛼(𝑥), 𝑓2𝛼(𝑥)] for each 𝛼 ∈
[0,1] 

1. If 𝑓 is (1)-differentiable , then 𝑓1𝛼 and 𝑓2𝛼 are differentiable functions and 
[𝑓′(𝑥)]𝛼 = [𝑓1𝛼

′ (𝑥), 𝑓2𝛼
′ (𝑥)] . 

2. If 𝑓 is (2)-differentiable , then 𝑓1𝛼 and 𝑓2𝛼 are differentiable functions and 
[𝑓′(𝑥)]𝛼 = [𝑓2𝛼

′ (𝑥), 𝑓1𝛼
′ (𝑥)] . 

Definition 11 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹 . 𝑓 𝑖𝑠 generalized Hukuhara differentiable (𝑔𝐻- 

differentiable) at 𝑥0 if the limit  lim
ℎ→0

𝑓(𝑥0+ℎ)⊝𝑔𝐻𝑓(𝑥0)

ℎ
  exist and belong to 𝑅𝐹 and 

𝑓′
𝑔𝐻

(𝑥0) is the generalized Hukuhara derivative (𝑔𝐻- derivative) of 𝑓 at 𝑥0. 

   Theorem 4 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹. Where [𝑓(𝑥)]𝛼 = [𝑓1𝛼(𝑥), 𝑓2𝛼(𝑥)] for each 𝛼 ∈
[0,1], such that the functions 𝑓1𝛼(𝑥) and 𝑓2𝛼(𝑥) are real-valued functions, 

differentiable with respect to 𝑥, uniformly in 𝛼 ∈ [0,1]. Then the function 𝑓(𝑥) is 

𝑔𝐻-differentiable at a fixed 𝑥 ∈ [𝑎, 𝑏] if and only if one of the following two cases 

holds: 

a. 𝑓′1𝛼(𝑥) is increasing, , 𝑓′2𝛼(𝑥) is decreasing as  functions of 𝛼, and 

𝑓′1𝛼(𝑥) ≤ 𝑓′2𝛼(𝑥) at 𝛼 − 𝑙𝑒𝑣𝑒𝑙 = 1. 

b. 𝑓′1𝛼(𝑥) is decreasing, , 𝑓′2𝛼(𝑥) is increasing as  functions of 𝛼, and 

𝑓′2𝛼(𝑥) ≤ 𝑓′
1𝛼

(𝑥) at 𝛼 − 𝑙𝑒𝑣𝑒𝑙 = 1. 

Moreover, [𝑓′
𝑔𝐻

(𝑥)]
𝛼

= [min{𝑓′
1𝛼

(𝑥), 𝑓′
2𝛼

(𝑥)} , max{𝑓′
1𝛼

(𝑥), 𝑓′
2𝛼

(𝑥)} ]. 

 

Definition 12 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹  and 𝑥0 ∈ (𝑎, 𝑏) with 𝑓1𝛼(𝑥) and 𝑓2𝛼(𝑥) both 

differentiable at 𝑥0. We say that : 
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1. 𝑓 is (1)-differentiable at 𝑥0 if  [𝑓′
𝑔𝐻

(𝑥0)]
𝛼

= [𝑓′
1𝛼

(𝑥0), 𝑓′
2𝛼

(𝑥0)]. 

2. 𝑓 is (2)-differentiable at 𝑥0 if  [𝑓′
𝑔𝐻

(𝑥0)]
𝛼

= [𝑓′
2𝛼

(𝑥0), 𝑓′
1𝛼

(𝑥0)], ∀𝛼 ∈

[0,1]. 
 

Remark 5 In [9], Bede and Stefanini showed that the 𝑔𝐻-differentiability concept 

is more general than the 𝐺𝐻-differentiability by giving a counter example. 

 

Definition 13 Let 𝑓: [𝑎, 𝑏] → 𝑅𝐹 . 𝑓 𝑖𝑠 generalized differentiable (𝑔- differentiable) 

at 𝑥0 if the  lim
ℎ→0

𝑓(𝑥0+ℎ)⊝𝑔𝑓(𝑥0)

ℎ
  exist and belong to 𝑅𝐹 and 𝑓′

𝑔
(𝑥0) is the 

generalized derivative (𝑔-derivative) of 𝑓 at 𝑥0. Moreover, 

 [𝑓′
𝑔

(𝑥)]
𝛼

= [ inf
𝛽≥𝛼

min{𝑓′
1𝛼

(𝑥), 𝑓′
2𝛼

(𝑥)} , sup
𝛽≥𝛼

max{𝑓′
1𝛼

(𝑥), 𝑓′
2𝛼

(𝑥)} ]. 

 

For more details, they can be found in [5, 6,8,9,11,15,16,20,29,31]. 

  

2.2 Fuzzy Differential Equations and Numerical Methods 

     Consider that the classical initial value problem (IVP) 

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡))  , 𝑥(𝑡0) = 𝑥0                                    (2) 

where 𝑓 is a function of 𝑡 and 𝑥 𝑎𝑛𝑑 𝑥0 is an initial value and 𝑥′(𝑡) is derivative of 

function 𝑥 with respect to 𝑡. Assume that the initial value 𝑥0 is a fuzzy number, 

then we have the following fuzzy initial value problem (FIVP): 

𝑋′(𝑡) = 𝑓(𝑡, 𝑋(𝑡)), 𝑋(𝑡0) = 𝑋0                                  (3) 

where 𝑓: [0, 𝑇] × 𝑅𝐹
𝑛 → 𝑅𝐹

𝑛 is a fuzzy interval-valued function and 𝑋0 ∈ 𝑅𝐹
𝑛. 

    The topics of numerical methods for solving fuzzy differential equations (FDE) 

have been rapidly growing in recent years. Some authors used numerical methods 

for FDE such as the fuzzy Euler method, Runge-Kutta method, as in 

[1,2,13,21,26]. In [13], they extended Runge-Kutta method for solving FDE 

numerically under generalized differentiability. They also compared the errors of 

generalized Runge-Kutta and Euler methods and observed that the error of 

generalized Runge-Kutta method was less than the generalized Euler method; that 

is, the generalized Runge-Kutta method was better than generalized Euler method. 
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In our thesis we will solve FDE’s by converting a fuzzy system to a system of 

ODE’s and use Matlab with solver ode45. ode45 can only solve a first order ODE. 

Therefore, to solve a higher order ODE, the ODE has to be first converted to a set 

of first order ODE's. It uses six stages, provides fourth and fifth order formulas of 

Runge-Kutta method. It compares methods of orders four and five to estimate error 

and determine step size. The fourth order Runge-Kutta method, the most widely 

used is the following: 

Given the IVP: 𝑥′ = 𝑓(𝑡, 𝑥(𝑡))with 𝑥(𝑡0) = 𝑥0 and ℎ a step size, we compute: 

 

𝑘1 = ℎ𝑓(𝑡𝑖 , 𝑥𝑖) 

𝑘2 = ℎ𝑓(𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

𝑘1

2
) 

𝑘3 = ℎ𝑓(𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

𝑘2

2
) 

𝑘4 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑥𝑖 + 𝑘3) 

𝑥𝑖+1 = 𝑥𝑖 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

For 𝑖 = 0,1, … . , 𝑛 − 1. 
 

2.3 Stability of the Equilibrium Point  

Definition 14 The system 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦) 

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦) 

 

is called an autonomous system of differential equations. In such a system, the 

independent variable 𝑡 is absent (i.e., 𝑡 does not appear explicitly). The values of 

(𝑥, 𝑦) for which  𝑓(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑔(𝑥, 𝑦) = 0 are called the equilibrium points, 

of the system. Hence, there is no change occurs in either the 𝑥 or 𝑦. The stability 

discusses the behavior of the curves near an equilibrium point. 

 

Proposition 1 [24] 𝑥 is an equilibrium point of (2) if and only if 𝜒{𝑥} is an 

equilibrium point of (3), where 𝜒{𝑥} is the characteristic function of 𝑥. 

In order to determine the stability of the equilibrium points of (3), start with fuzzy 

initial values near those equilibrium points. In this case, one of the following three 

possibilities can take place: 
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1. If the fuzzy initial values are sufficiently close to the fuzzy equilibrium 

points and stay close when 𝑡 increases, then the fuzzy equilibrium points 

are said to be fuzzy stable. 

2. If the fuzzy initial values are sufficiently close to the fuzzy equilibrium 

points and approach them when 𝑡 approaches infinity, then the fuzzy 

equilibrium points are said to be asymptotically fuzzy stable. 

3. If the fuzzy initial values are sufficiently close to the fuzzy equilibrium 

points and move away from them when 𝑡 increases, then the fuzzy 

equilibrium points are said to be fuzzy unstable. 

 

2.4 Fuzzy Predator-Prey Models 

      In data collection, both populations are nearly always affected by uncertainty. 

For the preliminary case, we assume that the initial populations of predator and 

prey are fuzzy and the parameters remain crisp numbers. Thus model (1) becomes:  

𝑑𝑋

𝑑𝑡
= 𝑎𝑋 − 𝑏𝑋𝑌  

𝑑𝑌

𝑑𝑡
= −𝑐𝑌 + 𝑑𝑋𝑌 

 𝑋(𝑡0) = 𝑋0 𝑎𝑛𝑑 𝑌(𝑡0) = 𝑌0                                         (4) 

where 𝑋0 and 𝑌0 are fuzzy numbers and 𝑎, 𝑏, 𝑐 and 𝑑 are positive real (crisp) 

numbers. 

       In chapter 3 we study the fuzzy predator-prey model which was presented in 

[2] and solved by Euler method. We will study this model for different cases of 

fuzzy numbers for the initial conditions and analyze them.  
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Chapter 3 

An Application of Fuzzy Predator-Prey Model: The 

Simplest Model.  

 
3.1: A Predator-Prey Model with Fuzzy Initial Conditions 

Consider the following predator- prey model:  

𝑥′(𝑡) = 𝑥 − 0.03𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

With initial conditions: 

𝑥𝑜 = 15 ,  𝑦𝑜 = 15                                                 (5) 

Where 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are numbers of prey and predator at time 𝑡, respectively. The 

equilibrium points of the model are the points at which the derivatives equal to 

zero. Solving the resulting system, model (5) has two equilibrium points 

(0,0) 𝑎𝑛𝑑 (40,33.33). We solve the model numerically by Runge-Kutta method in 

Matlab. The solution for model (5) which we called it the crisp (classical) solution 

for the time interval [0,100] is given in figure (3.1.1) and table (3.1.1). 

Table (3.1.1): The crisp solution of (5) 

Time 𝑥(𝑡) 𝑦(𝑡) 

0.0000 15.0000 15.0000 

5.0000 74.3290 65.9610 

10.0000 8.6870 20.3800 

15.0000 125.5500 30.9900 

20.0000 6.2827 29.2910 

25.0000 81.9850 14.2220 

30.0000 6.7937 43.3010 

35.0000 39.1410 11.4180 

40.0000 13.1750 62.1540 

45.0000 18.3480 13.1480 

50.0000 48.1690 73.3960 

55.0000 9.5843 17.9990 

60.0000 126.3700 40.5810 

65.0000 6.2694 26.4420 

70.0000 95.1240 15.6750 

75.0000 6.0738 40.0000 

80.0000 44.4160 11.1530 

85.0000 10.8280 59.3380 

90.0000 19.6920 12.4410 

95.0000 39.9810 74.8640 

100.0000 9.5716 17.0560 
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Figure (3.1.1): The crisp solution 

The first equilibrium point is uninteresting because there are no populations to 

observe in the model. It means that the predator populations can only grow if there 

is not any predator to begin with, and the same holds for the prey populations. 

However, the second equilibrium point is of interest. From the previous table and 

figure, we can note that the solution is periodic about the equilibrium point 

(40,33.33), so this point is stable. 

Now, we want to convert model (5) to a fuzzy model by assuming that 𝑥0 𝑎𝑛𝑑 𝑦0 

are fuzzy numbers.  

For case 1: we convert the initial conditions to triangular fuzzy numbers as 

follows: [𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼], [𝑦0]𝛼 = [14 + 𝛼, 16 − 𝛼]. Let the α-level 

intervals of  X(t)  and Y(t) be  [𝑋(𝑡)]𝛼 = [𝑢(𝑡), 𝑣(𝑡)] and [𝑌(𝑡)]𝛼 = [𝑟(𝑡), 𝑠(𝑡)], 
respectively. First we find the generalized Hukuhara derivatives of X(t) and Y(t): 

[𝑋′
𝑔𝐻(𝑡)]

𝛼
= [ min

𝑥𝜖[𝑋(𝑡)]𝛼 ,𝑦𝜖[𝑌(𝑡)]𝛼

{𝑋 − 0.03𝑋𝑌} , max
𝑥𝜖[𝑋(𝑡)]𝛼 ,𝑦𝜖[𝑌(𝑡)]𝛼

{𝑋 − 0.03𝑋𝑌}] 

[𝑌′
𝑔𝐻(𝑡)]𝛼 = [ min

𝑥𝜖[𝑋(𝑡)]𝛼 ,𝑦𝜖[𝑌(𝑡)]𝛼

{−0.4𝑌 + 0.01𝑋𝑌} , max
𝑥𝜖[𝑋(𝑡)]𝛼 ,𝑦𝜖[𝑌(𝑡)]𝛼

{−0.4𝑌 −  0.01𝑋𝑌}] 

Second, we assume that X(t) and Y(t) are (1)-differentiable, we called this form 

(1,1)-differentiable, then [𝑋′
𝑔𝐻(𝑡)]𝛼 = [𝑢ʹ(𝑡), 𝑣ʹ(𝑡)] and [𝑌′

𝑔𝐻(𝑡)]𝛼 = [𝑟ʹ(𝑡), 𝑠ʹ(𝑡)]. 

So, model (5) becomes a system of ordinary differential equations with four 

equations and four variables:  

𝑢′ = 𝑢 − 0.03𝑣𝑠 

𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (6) 
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Third we solve (6) by Runge-Kutta method in Matlab using the numerical solver 

ode45 at α-level= 0,0.5,1. The model has two fuzzy equilibrium points: 

𝜒(40,33.33)and 𝜒(0,0) . At α-level = 0, the solution is table (3.1.2), where its graph is 

figure (3.1.2): 

 

Table (3.1.2): The solution of (6) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.6670 18.8473 12.9332 15.3332 

0.5000 17.4820 22.4482 11.9394 14.8656 

0.7500 19.3670 27.0264 10.9946 14.6262 

1.0000 21.1660 32.8839 10.0663 14.6636 

1.2500 22.5880 40.4312 9.1092 15.0576 

1.5000 23.0900 50.2313 8.0569 15.9429 

1.7500 21.6840 63.0542 6.8114 17.5501 

2.0000 16.5030 79.9389 5.2282 20.2979 

2.2500 3.9817 102.2151 3.1076 24.9730 

2.5000 -23.1180 131.3063 0.2211 33.1748 

2.7500 -80.1550 167.8434 -3.5389 48.3322 

3.0000 -200.9900 208.9989 -7.7090 78.0937 

3.2500 -459.9900 243.2808 -10.6746 139.1784 

3.5000 -996.8000 248.0578 -10.8598 261.0619 

3.7500 -1958.0000 194.5493 -9.6853 462.4357 

4.0000 -3141.1000 54.2850 -8.4039 644.4873 

4.2500 -3811.0000 -154.5092 -6.3015 573.3541 

4.5000 -3961.8000 -360.5598 -3.3223 299.5329 

4.7500 -4387.0000 -535.8965 -1.0252 97.3433 

5.0000 -5364.7000 -709.0471 -0.1807 20.6269 

 

 

Figure (3.1.2): The solution of (6) at α=0 

 

 

At α-level = 0.5, the solution is table (3.1.3) and figure (3.1.3): 



16 
 

Table (3.1.3): The solution of (5) at α=0.5 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.5000 15.5000 14.5000 15.5000 

0.2500 16.4710 18.0610 13.5310 14.7310 

0.5000 18.7500 21.2330 12.6640 14.1270 

0.7500 21.3450 25.1750 11.8880 13.7040 

1.0000 24.2330 30.0930 11.1860 13.4850 

1.2500 27.3340 36.2610 10.5380 13.5130 

1.5000 30.4630 44.0450 9.9108 13.8570 

1.7500 33.2370 53.9510 9.2550 14.6320 

2.0000 34.8990 66.6840 8.4874 16.0400 

2.2500 33.9750 83.2450 7.4694 18.4430 

2.5000 27.4970 105.0500 5.9723 22.5400 

2.7500 9.3367 134.0200 3.6428 29.7540 

3.0000 -34.1760 172.1200 0.0506 43.2790 

3.2500 -135.3600 219.2200 -4.9244 70.7630 

3.5000 -373.4000 265.9300 -9.8945 131.0700 

3.7500 -924.6000 284.0100 -11.6260 264.8900 

4.0000 -2032.8000 232.6300 -10.4330 516.5400 

4.2500 -3501.1000 71.1710 -9.0457 775.6500 

4.5000 -4214.1000 -178.8300 -6.7784 684.2800 

4.7500 -4177.2000 -415.8800 -3.4036 322.2900 

5.0000 -4553.8000 -608.5800 -0.9155 89.1400 

 

 
 Figure (3.1.3): The solution of (6) at α=0.5 

 

At α-level = 1, the solution is table (3.1.4) and figure (3.1.4): 

Table (3.1.4): The solution of (6) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

5.0000 74.3290 74.3290 65.9610 65.9610 

10.0000 8.6870 8.6870 20.3800 20.3800 

15.0000 125.5500 125.5500 30.9900 30.9900 

20.0000 6.2827 6.2827 29.2910 29.2910 

25.0000 81.9850 81.9850 14.2220 14.2220 
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30.0000 6.7937 6.7937 43.3010 43.3010 

35.0000 39.1410 39.1410 11.4180 11.4180 

40.0000 13.1750 13.1750 62.1540 62.1540 

45.0000 18.3480 18.3480 13.1480 13.1480 

50.0000 48.1690 48.1690 73.3960 73.3960 

55.0000 9.5843 9.5843 17.9990 17.9990 

60.0000 126.3700 126.3700 40.5810 40.5810 

65.0000 6.2694 6.2694 26.4420 26.4420 

70.0000 95.1240 95.1240 15.6750 15.6750 

75.0000 6.0738 6.0738 40.0000 40.0000 

80.0000 44.4160 44.4160 11.1530 11.1530 

85.0000 10.8280 10.8280 59.3380 59.3380 

90.0000 19.6920 19.6920 12.4410 12.4410 

95.0000 39.9810 39.9810 74.8640 74.8640 

100.0000 9.5716 9.5716 17.0560 17.0560 

 

 
Figure (3.1.4): The solution of (6) at α=1 

 

From previous tables and figures, we can note that when 𝛼 < 1, the solutions of 

𝑢(𝑡), 𝑣(𝑡)𝑎𝑛𝑑 𝑟(𝑡) → −∞ 𝑎𝑠 𝑡 → ∞. So, there are no acceptable solutions for 

𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) since 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are numbers of populations which can’t be 

negative. Also we can note that the interesting equilibrium point is fuzzy unstable. 

When 𝛼 = 1, we obtain solution equivalent to the crisp solution with stable 

equilibrium point 𝜒(40,33.33). 

 

Now, If  𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)- differentiable, form (1,2)-

differentiable, then  [𝑋ʹ(𝑡)]𝛼 = [𝑢ʹ(𝑡), 𝑣ʹ(𝑡)]  and [𝑌ʹ(𝑡)]𝛼 = [𝑠ʹ(𝑡), 𝑟ʹ(𝑡)] then the 

model becomes as follow: 

𝑢′ = 𝑢 − 0.03𝑣𝑠 

𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                (7) 
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We solve (7) by Runge-Kutta method in Matlab at different α-levels. At α-level = 

0, the solution is figure (3.1.5)  

 

 

Figure (3.1.5): The solution of (7) at α=0 

 

At α-level = 0.5, the solution is figure (3.1.6): 

 

 
Figure (3.1.6): The solution of (7) at α=0.5 

 

At α-level = 1, the solution is table (3.1.5) and figure (3.1.7): 

 

Table (3.1.5): The solution of (6) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

5.0000 74.3290 74.3290 65.9610 65.9610 

10.0000 8.6870 8.6870 20.3800 20.3800 

15.0000 125.5500 125.5500 30.9900 30.9900 

20.0000 6.2827 6.2827 29.2910 29.2910 

25.0000 81.9850 81.9850 14.2220 14.2220 

30.0000 6.7937 6.7937 43.3010 43.3010 

35.0000 39.1410 39.1410 11.4180 11.4180 

40.0000 13.1750 13.1750 62.1540 62.1540 
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45.0000 18.3480 18.3480 13.1480 13.1480 

50.0000 48.1690 48.1690 73.3960 73.3960 

55.0000 9.5843 9.5843 17.9990 17.9990 

60.0000 126.3700 126.3700 40.5810 40.5810 

65.0000 6.2694 6.2694 26.4420 26.4420 

70.0000 95.1240 95.1240 15.6750 15.6750 

75.0000 6.0738 6.0738 40.0000 40.0000 

80.0000 44.4160 44.4160 11.1530 11.1530 

85.0000 10.8280 10.8280 59.3380 59.3380 

90.0000 19.6920 19.6920 12.4410 12.4410 

95.0000 39.9810 39.9810 74.8640 74.8640 

100.0000 9.5716 9.5716 17.0560 17.0560 

 

 
Figure (3.1.7): The solution of (7) at α=1 

One can conclude from the previous figures that when 𝑥(𝑡) is (1)-differentiable 

and 𝑦(𝑡) is (2)- differentiable and for 𝛼 < 1  there is no fuzzy solution for 𝑦(𝑡) 

since 𝑟(𝑡) > 𝑠(𝑡) for some time intervals but there is a fuzzy solution for 𝑥(𝑡). 

However, the solutions are unacceptable due to the presence of negative values and 

the equilibrium point 𝜒(40,33.33) is fuzzy unstable. When 𝛼 = 1 , the solution is the 

crisp one and 𝜒(40,33.33) is fuzzy stable equilibrium point. 

  

Now, If  𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1) - differentiable, form (2,1)-

differentiable, then  [𝑋ʹ(𝑡)]𝛼 = [𝑣ʹ(𝑡), 𝑢ʹ(𝑡)]  and [𝑌ʹ(𝑡)]𝛼 = [𝑟ʹ(𝑡), 𝑠ʹ(𝑡)] then the 

model becomes: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (8) 

We solve (8) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1. At α-level = 

0, the solution is figure (3.1.8).  
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Figure (3.1.8): The solution of (8) at α=0 

 

At α-level = 0.5, the solution is figure (3.1.9)  

 

 

Figure (3.1.9): The solution of (8) at α=0.5 

 

At α-level = 1, the solution is table (3.1.6) and figure (3.1.10)  

 

Table (3.1.6): The solution of (6) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

5.0000 74.3290 74.3290 65.9610 65.9610 

10.0000 8.6870 8.6870 20.3800 20.3800 

15.0000 125.5500 125.5500 30.9900 30.9900 

20.0000 6.2827 6.2827 29.2910 29.2910 

25.0000 81.9850 81.9850 14.2220 14.2220 

30.0000 6.7937 6.7937 43.3010 43.3010 

35.0000 39.1410 39.1410 11.4180 11.4180 

40.0000 13.1750 13.1750 62.1540 62.1540 

45.0000 18.3480 18.3480 13.1480 13.1480 

50.0000 48.1690 48.1690 73.3960 73.3960 

55.0000 9.5843 9.5843 17.9990 17.9990 

60.0000 126.3700 126.3700 40.5810 40.5810 
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65.0000 6.2694 6.2694 26.4420 26.4420 

70.0000 95.1240 95.1240 15.6750 15.6750 

75.0000 6.0738 6.0738 40.0000 40.0000 

80.0000 44.4160 44.4160 11.1530 11.1530 

85.0000 10.8280 10.8280 59.3380 59.3380 

90.0000 19.6920 19.6920 12.4410 12.4410 

95.0000 39.9810 39.9810 74.8640 74.8640 

100.0000 9.5716 9.5716 17.0560 17.0560 

 

 
Figure (3.1.10): The solution of (8) at α=1 

 

When 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable we note that for 𝛼 <

1  there is no fuzzy solution for 𝑥(𝑡) since 𝑢(𝑡) > 𝑣(𝑡) for some time intervals but 

there is a fuzzy solution for 𝑦(𝑡) which is unacceptable since 𝑟(𝑡) → −∞ 𝑎𝑠 𝑡 →

∞. Here also 𝜒(40,33.33) is unstable fuzzy equilibrium point. When 𝛼 = 1 the 

solution is equivalent to the crisp solution and the equilibrium point is fuzzy stable. 

Now, If  𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, form (2,2)-differentiable, then  

[𝑋ʹ(𝑡)]𝛼 = [𝑣ʹ(𝑡), 𝑢ʹ(𝑡)]  and [𝑌ʹ(𝑡)]𝛼 = [𝑠ʹ(𝑡), 𝑟ʹ(𝑡)] and the model becomes: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (9) 

 

We solve (9) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1.At α-level = 

0, the solution graphs are figure (3.1.11) and figure (3.1.12): 
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Figure (3.1.11): The solution of (9) at α=0 for short time period  

 

The lower and upper bounds of 𝑥(𝑡) start with different points, similarly for 𝑦(𝑡). 

and 𝑢(𝑡) > 𝑣(𝑡) 𝑓𝑜𝑟 𝑡 < 15. As time increases, the solution of lower and upper 

bounds of 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) become identical as in the figure (3.1.12) 

 

 
Figure (3.1.12): The solution of (9) at α=0 as time increases 

 

At α-level = 0.5, the solution is figure (3.1.13) and figure (3.1.14): 

 

 
Figure (3.1.13): The solution of (9) at α=0.5 for short time period  
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Figure (3.1.14): The solution of (9) at α=0.5 as time increases 

 

For 𝑡 < 15 , 𝑢(𝑡) > 𝑣(𝑡) and as time increases the lower and upper bound of 

𝑥(𝑡) and 𝑦(𝑡) become identical. 

 

At α-level = 1, the solution is table (3.1.7) and figure (3.1.15): 

 

Table (3.1.7): The solution of (6) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

5.0000 74.3290 74.3290 65.9610 65.9610 

10.0000 8.6870 8.6870 20.3800 20.3800 

15.0000 125.5500 125.5500 30.9900 30.9900 

20.0000 6.2827 6.2827 29.2910 29.2910 

25.0000 81.9850 81.9850 14.2220 14.2220 

30.0000 6.7937 6.7937 43.3010 43.3010 

35.0000 39.1410 39.1410 11.4180 11.4180 

40.0000 13.1750 13.1750 62.1540 62.1540 

45.0000 18.3480 18.3480 13.1480 13.1480 

50.0000 48.1690 48.1690 73.3960 73.3960 

55.0000 9.5843 9.5843 17.9990 17.9990 

60.0000 126.3700 126.3700 40.5810 40.5810 

65.0000 6.2694 6.2694 26.4420 26.4420 

70.0000 95.1240 95.1240 15.6750 15.6750 

75.0000 6.0738 6.0738 40.0000 40.0000 

80.0000 44.4160 44.4160 11.1530 11.1530 

85.0000 10.8280 10.8280 59.3380 59.3380 

90.0000 19.6920 19.6920 12.4410 12.4410 

95.0000 39.9810 39.9810 74.8640 74.8640 

100.0000 9.5716 9.5716 17.0560 17.0560 
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Figure (3.1.15): The solution of (9) at α=1  

 

From previous graphs, we note that when we assume 𝑥(𝑡) and 𝑦(𝑡) are (2)- 

differentiable at any α< 1, the lower and upper bounds of 𝑥(𝑡) and 𝑦(𝑡) become 

identical as time increases and oscillate about the equilibrium point 𝜒(40,33.33). So 

this point is fuzzy stable. However, when α= 1 the solution is equivalent to the 

solution of the crisp case.  

In figures (3.1.16) and (3.1.17), we plot the crisp solution with the solution of the 

fuzzy model (9) at α=0. 

 

 

Figure (3.1.16): The solution of (9) at α=0 with the crisp case for short time period 
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Figure (3.1.17): The solution of (9) at α=0 with the crisp case for long time period  

 

From figures (3.1.16) and (3.1.17) we can note that for short time period, the 

solution of 𝑥(𝑡) lies between the solution of 𝑢(𝑡) and 𝑣(𝑡) then as time increases 

they become identical (𝑥(𝑡) = 𝑢(𝑡) = 𝑣(𝑡)). Also, the solution of 𝑦(𝑡) lies 

between the solution of 𝑟(𝑡) and 𝑠(𝑡) and as time increases they become identical 

(𝑦(𝑡) = 𝑟(𝑡) = 𝑠(𝑡)). 

The model (5) was presented in [2] and they obtained fuzzy unstable equilibrium 

point by Euler method. However, we discuss this model and solve it using Runge-

Kutta method. Thereafter, we conclude that when 𝑥(𝑡) and 𝑦(𝑡) are (1,1), (1,2) and 

(2,1)-differentiable there is some negative values for 𝛼 < 1, there is no meaning in 

this solution since it models population. At 𝛼 = 1 , the core of the solution is the 

same as the solution of the crisp case, so it’s stable. While, when 𝑥 (𝑡) and 𝑦(𝑡)  

are (2)-differentiable, the curves of 𝑥 (𝑡) and 𝑦(𝑡) become identical as 𝑡 →  ∞ and 

the crisp solution lies between them. So, there is a fuzzy solution as 𝑡 →  ∞,which  

is periodic about the equilibrium point. As prey population increases the predator 

population is minimum and as prey population decreases the predator population is 

maximum. So this solution is acceptable biologically and fuzzy stable. Therefore, 

the form (2)-differentiable for 𝑥 (𝑡) and 𝑦(𝑡) gives solution better than the other 

forms. 

Case 2: we try to change the initial conditions of (5) to be close to the equilibrium 

point (40 ,33.33). So, we let 𝑥𝑜 = 41 and 𝑦𝑜 = 32. Then we obtain the following 

model: 

𝑥′(𝑡) = 𝑥 − 0.03𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

𝑥𝑜 = 41 ,  𝑦𝑜 = 32                                             (10) 
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We solve (10) by Matlab using Runge-Kutta method. The solution for model (10) 

is given in table (3.1.8) and figure (3.1.18). 

 

Table (3.1.8): The solution of (10)  
Time 𝑥(𝑡) 𝑦(𝑡) 

0.0000 41.0000 32.0000 

5.0000 38.8050 34.6630 

10.0000 41.1660 32.0120 

15.0000 38.6660 34.6370 

20.0000 41.3210 32.0240 

25.0000 38.5340 34.6150 

30.0000 41.4580 32.0470 

35.0000 38.4080 34.5940 

40.0000 41.5870 32.0750 

45.0000 38.2620 34.5680 

50.0000 41.7460 32.1090 

55.0000 38.0930 34.5230 

60.0000 41.9130 32.1430 

65.0000 37.9500 34.4690 

70.0000 42.0640 32.1820 

75.0000 37.8430 34.4200 

80.0000 42.1900 32.2310 

85.0000 37.7260 34.3760 

90.0000 42.3130 32.2810 

95.0000 37.5910 34.3240 

100.0000 42.4600 32.3350 

 

 

Figure (3.1.18): The solution of (10)  

 

From table (3.1.8) and figure (3.1.18) we can notice that the crisp solution of 

𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are periodic about the equilibrium point 𝜒(40,33.33). So, this 

interesting point is stable. 
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Here, we convert model (10) to a fuzzy model by assuming the initial conditions 

triangular fuzzy numbers. Let [𝑥0]𝛼 = [40 + 𝛼 , 42 − 𝛼] 𝑎𝑛𝑑 [𝑦0]𝛼 =
[31 + 𝛼 , 33 − 𝛼]. Then we solve the fuzzy model in the same manner as we did 

with the previous conditions. We assume that 𝑥 (𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (1)-differentiable, 

then we have the following model:  

𝑢′ = 𝑢 − 0.03𝑣𝑠 

𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 40 + 𝛼, 𝑣0 = 42 − 𝛼, 𝑟0 = 31 + 𝛼, 𝑠0 = 33 − 𝛼               (11) 

Thereafter, we solve (11) by Runge-Kutta method in Matlab at α-level= 0,0.5,1. 

At α-level = 0, the solution is table (3.1.9), where its graph is figure (3.1.19): 

Table (3.1.9): The solution of (11) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 40.0000 42.0000 31.0000 33.0000 

0.2500 39.2930 43.4760 30.7440 33.4560 

0.5000 37.6510 45.7710 30.3120 34.1630 

0.7500 34.3430 49.5090 29.5550 35.2840 

1.0000 28.0270 55.7500 28.2260 37.1200 

1.2500 16.1910 66.2400 25.9210 40.2420 

1.5000 -6.1148 83.6090 22.0390 45.7790 

1.7500 -48.9800 111.1900 15.8470 56.0550 

2.0000 -134.5100 150.7900 6.9865 76.1760 

2.2500 -311.5300 196.1300 -3.0815 117.3000 

2.5000 -677.3000 223.1400 -9.7960 200.4900 

2.7500 -1356.7000 198.9900 -10.5090 345.7300 

3.0000 -2316.3000 104.4900 -9.1427 514.4800 

3.2500 -3112.7000 -59.4850 -7.3671 551.350 

3.5000 -3405.3000 -248.8000 -4.7514 375.1800 

3.7500 -3640.0000 -419.9700 -2.0296 162.0200 

4.0000 -4272.8000 -577.9300 -0.5146 46.6020 

4.2500 -5354.2000 -751.9100 -0.0791 8.9054 

4.5000 -6847.1000 -967.0900 -0.0073 1.0506 

4.7500 -8788.4000 -1241.9000 -0.0004 0.0674 

5.0000 -11284.0000 -1594.7000 0.0000 0.0020 
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Figure (3.1.19): The solution of (11) at α=0 

 

At α-level = 0.5, the solution graph is figure (3.1.20) in the appendix. At α-level = 

1, the solution is table (3.1.10) and figure (3.1.21): 

  

Table (3.1.10): The solution of (11) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 41.0000 41.0000 32.0000 32.0000 

5.0000 38.8050 38.8050 34.6630 34.6630 

10.0000 41.1660 41.1660 32.0120 32.0120 

15.0000 38.6660 38.6660 34.6370 34.6370 

20.0000 41.3210 41.3210 32.0240 32.0240 

25.0000 38.5340 38.5340 34.6150 34.6150 

30.0000 41.4580 41.4580 32.0470 32.0470 

35.0000 38.4080 38.4080 34.5940 34.5940 

40.0000 41.5870 41.5870 32.0750 32.0750 

45.0000 38.2620 38.2620 34.5680 34.5680 

50.0000 41.7460 41.7460 32.1090 32.1090 

55.0000 38.0930 38.0930 34.5230 34.5230 

60.0000 41.9130 41.9130 32.1430 32.1430 

65.0000 37.9500 37.9500 34.4690 34.4690 

70.0000 42.0640 42.0640 32.1820 32.1820 

75.0000 37.8430 37.8430 34.4200 34.4200 

80.0000 42.1900 42.1900 32.2310 32.2310 

85.0000 37.7260 37.7260 34.3760 34.3760 

90.0000 42.3130 42.3130 32.2810 32.2810 

95.0000 37.5910 37.5910 34.3240 34.3240 

100.0000 42.4600 42.4600 32.3350 32.3350 

 



29 
 

 
Figure (3.1.21): The solution of (11) at α=1 

 

If 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then the model becomes:  

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 40 + 𝛼, 𝑣0 = 42 − 𝛼, 𝑟0 = 31 + 𝛼, 𝑠0 = 33 − 𝛼              (12) 

 

We solve (12) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1. At α-level= 

0, the solution is figure (3.1.22) as follow: 

 

 
Figure (3.1.22): The solution of (12) at α=0 

 

At α-level = 0.5, the solution figure (3.1.23) in the appendix. At α-level = 1, the 

solution is figure (3.1.24): 
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Figure (3.1.24): The solution of (12) at α=1 

 

If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then the model becomes: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠  
𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 40 + 𝛼, 𝑣0 = 42 − 𝛼, 𝑟0 = 31 + 𝛼, 𝑠0 = 33 − 𝛼               (13) 

 

We solve (13) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1. At α-level = 

0, the solution is figure (3.1.25): 

  

 
Figure (3.1.25): The solution of (13) at α=0 

 

At α-level = 0.5, the solution is figure (3.1.26) in the appendix. At α-level = 1, the 

solution is figure (3.1.27):  
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Figure (3.1.27): The solution of (13) at α=1 

 

Now, If 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡)are (2)-differentiable, then the model becomes: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 40 + 𝛼, 𝑣0 = 42 − 𝛼, 𝑟0 = 31 + 𝛼, 𝑠0 = 33 − 𝛼               (14) 

 

We solve (14) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1. At α-level = 

0, the solution graphs are figure (3.1.28) and figure (3.1.29):  

 

 
Figure (3.1.28): The solution of (14) at α=0 for short time period  
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Figure (3.1.29): The solution of (14) at α=0 as time increases 

 

At α= 0.5, the solution graphs are figure (3.1.30) and figure (3.1.31) in the 

appendix. At α = 1, the solution is figure (3.1.32): 

 

 
Figure (3.1.32): The solution of (14) at α=1  

 

When we change the initial conditions to be close to the equilibrium point, we 

obtain the same results when 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (1,1), (1,2) and (2,1)-differentiable 

as in case 1. While, when 𝑥 (𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable , at any 𝛼 < 1  we 

note that 𝑢(𝑡) > 𝑣(𝑡) and 𝑟(𝑡) > 𝑠(𝑡) at some time intervals. So, there are no 

fuzzy solution  for 𝑥 (𝑡) 𝑎𝑛𝑑 𝑦(𝑡)but the solution is periodic about the equilibrium 

point and stable. At 𝛼 = 1, the solution is corresponding to the crisp solution and 

the interesting equilibrium point is stable. So, we can’t say that the (2)-

differentiable for 𝑥 (𝑡) 𝑎𝑛𝑑 𝑦(𝑡)with these initial conditions give good solution. 

 

Case 3: we try to change the 𝛼 − 𝑙𝑒𝑣𝑒𝑙 of the initial conditions in model (5) using 

shaped triangular fuzzy number. Let [𝑋0]𝛼 = [14 + 𝛼2,  16 − 𝛼2] = [𝑌0]𝛼. Then 

we find the simulations and graphical solutions of the fuzzy predator prey model at 

different 𝛼 − 𝑙𝑒𝑣𝑒𝑙 by matlab using Runge-Kutta method. First, if 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) 

are (1)-differentiable then we obtain the following model: 



33 
 

𝑢′ = 𝑢 − 0.03𝑣𝑠 

𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼2, 𝑣0 =  16 − 𝛼2, 𝑟0 = 14 + 𝛼2, 𝑠0 = 16 − 𝛼2           (15)                              

At α-level = 0, the solution is table (3.1.11), where its graph is figure (3.1.33): 

  

Table (3.1.11): The solution of (15) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.6670 18.8470 12.9330 15.3330 

0.5000 17.4820 22.4480 11.9390 14.8660 

0.7500 19.3670 27.0260 10.9950 14.6260 

1.0000 21.1660 32.8840 10.0660 14.6640 

1.2500 22.5880 40.4310 9.1092 15.0580 

1.5000 23.0900 50.2310 8.0569 15.9430 

1.7500 21.6840 63.0540 6.8114 17.5500 

2.0000 16.5030 79.9390 5.2282 20.2980 

2.2500 3.9817 102.2200 3.1076 24.9730 

2.5000 -23.1180 131.3100 0.2211 33.1750 

2.7500 -80.1550 167.8400 -3.5389 48.3320 

3.0000 -200.9900 209.0000 -7.7090 78.0940 

3.2500 -459.9900 243.2800 -10.6750 139.1800 

3.5000 -996.8000 248.0600 -10.8600 261.0600 

3.7500 -1958.0000 194.5500 -9.6853 462.4400 

4.0000 -3141.1000 54.2850 -8.4039 644.4900 

4.2500 -3811.0000 -154.5100 -6.3015 573.3500 

4.5000 -3961.8000 -360.5600 -3.3223 299.5300 

4.7500 -4387.0000 -535.9000 -1.0252 97.3430 

5.0000 -5364.7000 -709.0500 -0.1807 20.6270 

 

 
Figure (3.1.33): The solution of (15) at α=0 
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At α-level = 0.5, the solution is figure (3.1.34) in the appendix. At α-level = 1, the 

solution is table (3.1.12) and figure (3.1.35): 

 

Table (3.1.12): The solution of (15) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

5.0000 74.3290 74.3290 65.9610 65.9610 

10.0000 8.6870 8.6870 20.3800 20.3800 

15.0000 125.5500 125.5500 30.9900 30.9900 

20.0000 6.2827 6.2827 29.2910 29.2910 

25.0000 81.9850 81.9850 14.2220 14.2220 

30.0000 6.7937 6.7937 43.3010 43.3010 

35.0000 39.1410 39.1410 11.4180 11.4180 

40.0000 13.1750 13.1750 62.1540 62.1540 

45.0000 18.3480 18.3480 13.1480 13.1480 

50.0000 48.1690 48.1690 73.3960 73.3960 

55.0000 9.5843 9.5843 17.9990 17.9990 

60.0000 126.3700 126.3700 40.5810 40.5810 

65.0000 6.2694 6.2694 26.4420 26.4420 

70.0000 95.1240 95.1240 15.6750 15.6750 

75.0000 6.0738 6.0738 40.0000 40.0000 

80.0000 44.4160 44.4160 11.1530 11.1530 

85.0000 10.8280 10.8280 59.3380 59.3380 

90.0000 19.6920 19.6920 12.4410 12.4410 

95.0000 39.9810 39.9810 74.8640 74.8640 

100.0000 9.5716 9.5716 17.0560 17.0560 

 

 
Figure (3.1.35): The solution of (15) at α=1 

 

If 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then the model becomes:  

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 
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𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼2, 𝑣0 = 16 − 𝛼2, 𝑟0 = 14 + 𝛼2, 𝑠0 = 16 − 𝛼2           (16) 

At α-level = 0, the solution is figure (3.1.36) 

 

 
Figure (3.1.36): The solution of (16) at α=0 

 

At α-level = 0.5, the solution is figure (3.1.37) in the appendix. At α-level = 1, the 

solution is figure (3.1.38): 

 

 
Figure (3.1.38): The solution of (16) at α=1 

 

While 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then the model 

becomes: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠  
𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼2, 𝑣0 = 16 − 𝛼2, 𝑟0 = 14 + 𝛼2, 𝑠0 = 16 − 𝛼2           (17) 

 

At α-level = 0, the solution is figure (3.1.39)  
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Figure (3.1.39): The solution of (17) at α=0 

 

At α-level = 0.5, the solution is figure (3.1.40) in the appendix. At α-level = 1, the 

solution is figure (3.1.41): 

  

 
Figure (3.1.41): The solution of (17) at α=1 

 

Now, If 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable, then the model becomes: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼2, 𝑣0 = 16 − 𝛼2, 𝑟0 = 14 + 𝛼2, 𝑠0 = 16 − 𝛼2           (18) 

 

At α-level = 0, the solution is figure (3.1.42) and figure (3.1.43): 
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Figure (3.1.42): The solution of (18) at α=0 for short time period  

 

 
Figure (3.1.43): The solution of (18) at α=0 as time increases 

 

At α-level = 0.5, the solution graphs are figure (3.1.44) and figure (3.1.45) in the 

appendix. At α-level = 1, the solution is figure (3.1.46): 

 

 
Figure (3.1.46): The solution of (18) at α=1 
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From previous tables and figures we can note that for case 3 we obtain the same 

results as in case 1. So, there is a fuzzy solution which is periodic about the 

equilibrium point only when 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable. Thus this 

equilibrium point is stable. 

 

Case 4: We try to use trapezoidal fuzzy initial conditions. Therefore, we Let 𝑥0 =
 (14 ,14.5 ,15.5 ,16) = 𝑦0 trapezoidal fuzzy numbers and there 𝛼 − 𝑙𝑒𝑣𝑒𝑙𝑠 will be 

as follow:  [𝑥0]𝛼 = [14 +
𝛼

2
,  16 −

𝛼

2
] =  [𝑦0]𝛼. 

Then if 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (1)-differentiable the fuzzy model will be as follows: 

𝑢′ = 𝑢 − 0.03𝑣𝑠 

𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 +
𝛼

2
, 𝑣0 = 16 −

𝛼

2
, 𝑟0 = 14 +

𝛼

2
, 𝑠0 = 16 −

𝛼

2
                (19) 

And we solve (19) by Runge-Kutta method in Matlab at different α-level. At α-

level = 0, the solution is table (3.1.13), where its graph is figure (3.1.47): 

Table (3.1.13): The solution of (19) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.6670 18.8470 12.9330 15.3330 

0.5000 17.4820 22.4480 11.9390 14.8660 

0.7500 19.3670 27.0260 10.9950 14.6260 

1.0000 21.1660 32.8840 10.0660 14.6640 

1.2500 22.5880 40.4310 9.1092 15.0580 

1.5000 23.0900 50.2310 8.0569 15.9430 

1.7500 21.6840 63.0540 6.8114 17.5500 

2.0000 16.5030 79.9390 5.2282 20.2980 

2.2500 3.9817 102.2200 3.1076 24.9730 

2.5000 -23.1180 131.3100 0.2211 33.1750 

2.7500 -80.1550 167.8400 -3.5389 48.3320 

3.0000 -200.9900 209.0000 -7.7090 78.0940 

3.2500 -459.9900 243.2800 -10.6750 139.1800 

3.5000 -996.8000 248.0600 -10.8600 261.0600 

3.7500 -1958.0000 194.5500 -9.6853 462.4400 

4.0000 -3141.1000 54.2850 -8.4039 644.4900 

4.2500 -3811.0000 -154.5100 -6.3015 573.3500 

4.5000 -3961.8000 -360.5600 -3.3223 299.5300 

4.7500 -4387.0000 -535.9000 -1.0252 97.3430 

5.0000 -5364.7000 -709.0500 -0.1807 20.6270 
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Figure (3.1.47): The solution of (19) at α=0 

 

At α-level = 0.5, the solution is figure (3.1.48) in the appendix. At α-level = 1, the 

solution is table (3.1.14), where its graph is figure (3.1.49):  

 

Table (3.1.14): The solution of (19) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.5000 15.5000 14.5000 15.5000 

0.2500 16.4710 18.0610 13.5310 14.7310 

0.5000 18.7500 21.2330 12.6640 14.1270 

0.7500 21.3450 25.1750 11.8880 13.7040 

1.0000 24.2330 30.0930 11.1860 13.4850 

1.2500 27.3340 36.2610 10.5380 13.5130 

1.5000 30.4630 44.0450 9.9108 13.8570 

1.7500 33.2370 53.9510 9.2550 14.6320 

2.0000 34.8990 66.6840 8.4874 16.0400 

2.2500 33.9750 83.2450 7.4694 18.4430 

2.5000 27.4970 105.0500 5.9723 22.5400 

2.7500 9.3367 134.0200 3.6428 29.7540 

3.0000 -34.1760 172.1200 0.0506 43.2790 

3.2500 -135.3600 219.2200 -4.9244 70.7630 

3.5000 -373.4000 265.9300 -9.8945 131.0700 

3.7500 -924.6000 284.0100 -11.6260 264.8900 

4.0000 -2032.8000 232.6300 -10.4330 516.5400 

4.2500 -3501.1000 71.1710 -9.0457 775.6500 

4.5000 -4214.1000 -178.8300 -6.7784 684.2800 

4.7500 -4177.2000 -415.8800 -3.4036 322.2900 

5.0000 -4553.8000 -608.5800 -0.9155 89.1400 
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Figure (3.1.49): The solution of (19) at α=1 

 

While 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then the model 

becomes:  

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 +
𝛼

2
, 𝑣0 = 16 −

𝛼

2
, 𝑟0 = 14 +

𝛼

2
, 𝑠0 = 16 −

𝛼

2
             (20)  

We solve (20) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1. At α-level = 

0, the solution is figure (3.1.50) 

 

 
Figure (3.1.50): The solution of (20) at α=0 

  

At α-level = 0.5, the solution is figure (3.1.51) in the appendix. At α-level = 1, the 

solution is figure (3.1.52): 
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Figure (3.1.52): The solution of (20) at α=1 

 

However, If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)- differentiable, then the 

model becomes: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠  
𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 +
𝛼

2
, 𝑣0 = 16 −

𝛼

2
, 𝑟0 = 14 +

𝛼

2
, 𝑠0 = 16 −

𝛼

2
            (21) 

We solve (21) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1. At α-level = 

0, the solution is figure (3.1.53)  

 

 
Figure (3.1.53): The solution of (21) at α=0 

 

At α-level = 0.5, the solution is figure (3.1.54) in the appendix. At α-level = 1, the 

solution is figure (3.1.55): 
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Figure (3.1.55): The solution of (21) at α=1 

 

Now, If 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable, then we obtain the following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 

𝑣′ = 𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 +
𝛼

2
, 𝑣0 = 16 −

𝛼

2
, 𝑟0 = 14 +

𝛼

2
, 𝑠0 = 16 −

𝛼

2
                 (22) 

We solve (22) by Runge-Kutta method in Matlab at α-levels= 0,0.5,1. At α-level = 

0, the solution graphs are figure (3.1.56) and figure (3.1.57): 

 

 
Figure (3.1.56): The solution of (22) at α=0 for short time period  
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Figure (3.1.57): The solution of (22) at α=0 as time increases 

 

At α-level = 0.5, the solution graphs are figure (3.1.58) and figure (3.1.59) in the 

appendix. At α-level = 1, the solution graphs are figure (3.1.60) and figure 

(3.1.61): 

 

 
Figure (3.1.60): The solution of (22) at α=1 for short time period  

 

 
Figure (3.1.61): The solution of (22) at α=1 as time increases 



44 
 

 

For case 4, when 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (1,1), (1,2) and (2,1)-differentiable then the 

solution is incompatible with biological facts. At 𝛼 = 1, since 𝑢0 ≠ 𝑣0 and 𝑟0 ≠

𝑠0, the solution isn’t coincide with the crisp solution and the equilibrium points are 

fuzzy unstable. When 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable then there is a fuzzy 

solution expect at small time interval at beginning, and as time increases the 

solution becomes periodic about the equilibrium point. So, the equilibrium point is 

fuzzy stable. While at 𝛼 = 1, Since 𝑢0 ≠ 𝑣0 and 𝑟0 ≠ 𝑠0, the solution isn’t 

coincide with the crisp solution for short time period. Therefore, the triangular 

fuzzy initial condition is better than the trapezoidal one at least for 𝛼 = 1. 

 

3.2: A Predator-Prey Model with Fuzzy Parameters and Initial 

Conditions. 

 
In this section, we try to make the birth and death rates (parameters) of model (5) 

fuzzy numbers with fuzzy initial conditions. First, we want to fuzzify each 

parameter separately using a triangular fuzzy number and again using a trapezoidal 

fuzzy number. 

Here we fuzzify 𝑎 = 1. First, we let 𝑎 = (0.5 ,1 ,1.5) triangular fuzzy number. So, 

[𝑎]𝛼 = [0.5 +
𝛼

2
,  1.5 −  

𝛼

2
] and we obtain the following model: 

𝑥′(𝑡) = (0.5 ,1 ,1.5)𝑥 − 0.03𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

With fuzzy initial conditions: 

[𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼] , [𝑦0]𝛼 = [14 + 𝛼, 16 − 𝛼] 
 

If 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡)are (1)-differentiable, then the model will be: 

𝑢′ = (0.5 +  
𝛼

2
) 𝑢 − 0.03𝑣𝑠  

𝑣′ = (1.5 −
𝛼

2
)𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (23) 
This model will change at any value of α, so the equilibrium points will also 

change as α changes. The first equilibrium point is (0,0,0,0) for any α –level. The 
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second equilibrium point varies according to the α–level, as in the following table 

(3.2.1) 

Table (3.2.1): The equilibrium points of (23) 

α- level 𝑢 𝑣 𝑟 𝑠 

0 57.69 27.7345 24.0375 34.6681 

0.5 47.4252 33.7373 29.64 35.14 

1 40 40 33.3333 33.3333 

 

We solve (23) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is table (3.2.2), where its graph is figure (3.2.1): 

Table (3.2.2): The solution of (23) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 13.5440 21.5820 12.8980 15.3830 

0.5000 12.2620 29.9330 11.7780 15.1180 

0.7500 9.5687 42.4120 10.5690 15.3580 

1.0000 4.4171 61.0320 9.1713 16.3890 

1.2500 -5.3118 88.7600 7.4323 18.8000 

1.5000 -24.1360 129.8800 5.1219 23.8740 

1.7500 -63.7690 190.2300 1.9065 34.9990 

2.0000 -158.7600 276.3900 -2.5971 62.3590 

2.2500 -433.9500 388.6900 -8.1709 143.3600 

2.5000 -1413.1000 489.0700 -11.9510 436.7100 

2.7500 -4788.7000 411.9600 -12.1050 1446.0000 

3.0000 -8079.6000 -138.7100 -11.2450 2252.8000 

3.2500 -4134.1000 -781.0800 -7.1838 677.9500 

3.5000 -2646.1000 -1262.7000 -1.3098 52.6510 

3.7500 -2828.8000 -1848.1000 -0.0408 1.1271 

4.0000 -3201.8000 -2689.2000 -0.0002 0.0042 

4.2500 -3628.1000 -3912.7000 0.0000 0.0000 

4.5000 -4111.1000 -5692.9000 0.0000 0.0000 

4.7500 -4658.5000 -8283.2000 0.0000 0.0000 

5.0000 -5278.8000 -12052.0000 0.0000 0.0000 
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Figure (3.2.1): The solution of (23) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.2) in the appendix. At α-level = 1, the 

solution is table (3.2.3), where its graph is figure (3.2.3):  

 

Table (3.2.3): The solution of (23) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

5.0000 74.3290 74.3290 65.9610 65.9610 

10.0000 8.6870 8.6870 20.3800 20.3800 

15.0000 125.5500 125.5500 30.9900 30.9900 

20.0000 6.2827 6.2827 29.2910 29.2910 

25.0000 81.9850 81.9850 14.2220 14.2220 

30.0000 6.7937 6.7937 43.3010 43.3010 

35.0000 39.1410 39.1410 11.4180 11.4180 

40.0000 13.1750 13.1750 62.1540 62.1540 

45.0000 18.3480 18.3480 13.1480 13.1480 

50.0000 48.1690 48.1690 73.3960 73.3960 

55.0000 9.5843 9.5843 17.9990 17.9990 

60.0000 126.3700 126.3700 40.5810 40.5810 

65.0000 6.2694 6.2694 26.4420 26.4420 

70.0000 95.1240 95.1240 15.6750 15.6750 

75.0000 6.0738 6.0738 40.0000 40.0000 

80.0000 44.4160 44.4160 11.1530 11.1530 

85.0000 10.8280 10.8280 59.3380 59.3380 

90.0000 19.6920 19.6920 12.4410 12.4410 

95.0000 39.9810 39.9810 74.8640 74.8640 

100.0000 9.5716 9.5716 17.0560 17.0560 
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Figure (3.2.3): The solution of (23) at α=1 

 

Whereas if 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then the model 

will be: 

𝑢′ = (0.5 +  
𝛼

2
)𝑢 − 0.03𝑣𝑠  

𝑣′ = (1.5 −
𝛼

2
)𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠  
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (24) 

We solve (24) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.4): 

 

 
Figure (3.2.4): The solution of (24) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.5) in the appendix. At α-level = 1, the 

solution is figure (3.2.6):  
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Figure (3.2.6): The solution of (24) at α=1 

 

If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then the model will be: 

𝑢′ = (1.5 −
𝛼

2
)𝑣 − 0.03𝑢𝑟 

𝑣′ = (0.5 +  
𝛼

2
)𝑢 − 0.03𝑣𝑠  

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

With the initial conditions: 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (25) 

 

We solve (25) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.7). 

 

 
Figure (3.2.7): The solution of (25) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.8) in the appendix. At α-level = 1, the 

solution is figure (3.2.9): 
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Figure (3.2.9): The solution of (25) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, then the model will be: 

𝑢′ = (1.5 −
𝛼

2
)𝑣 − 0.03𝑢𝑟  

𝑣′ = (0.5 +  
𝛼

2
)𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠  
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (26) 

We solve (26) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution graphs are figure (3.2.10), figure (3.2.11) and figure (3.2.12):   

 

 
Figure (3.2.10): The solution of (26) at α=0 for short time period  
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Figures (3.2.11) and (3.2.12): The solution of (26) at α=0 as time increases 

 

At α = 0, a𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 57.69 , 𝑣(𝑡) → 27.73 , 𝑟(𝑡) → 24.04 ,  𝑠(𝑡) → 34.67 . 
So, the solution is asymptotically stable for 𝑦(𝑡) but there is no fuzzy solution for 

𝑥(𝑡) since 𝑢(𝑡) > 𝑣(𝑡). 

 

At α-level = 0.5, the solution graphs are figure (3.2.13), figure (3.2.14) and figure 

(3.2.15) in the appendix. At α-level = 1, the solution is figure (3.2.16):  

 

 
Figure (3.2.16): The solution of (26) at α=1  

 

At α= 1, the solution is similar to the crisp solution and it is stable solution. 
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Second, we let 𝑎 = (0.25 ,0.5 ,1.5 ,1.75)  trapezoidal fuzzy number. So, [𝑎]𝛼 =

[0.25 +
𝛼

4
,  1.75 −  

𝛼

4
] and we obtain the following model: 

𝑥′(𝑡) = (0.25 ,0.5 ,1.5 ,1.75)𝑥 − 0.03𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

With fuzzy initial conditions: 

[𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼], [𝑦0]𝛼 = [14 + 𝛼, 16 − 𝛼] 

 

If 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (1)-differentiable, then the model will be: 

𝑢′ = (0.25 +
𝛼

4
)𝑢 − 0.03𝑣𝑠  

𝑣′ = (1.75 −  
𝛼

4
)𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼              (27) 

The model will change at any value of α, so the equilibrium points will also change 

as α changes. The first equilibrium point is (0,0,0,0) for any α –level. The second 

equilibrium point varies according to the α–level, as in the following table (3.2.4). 

Table (3.2.4): The equilibrium points of (27) 
α- level 𝑢 𝑣 𝑟 𝑠 

0 76.5172 20.9103 15.9411 30.4942 

0.5 65.213 24.535 20.3791 33.2245 

1 57.69 27.7345 24.0375 34.6681 

 

We solve (27) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is table (3.2.5) and its graph is figure (3.2.17): 

 

 Table (3.2.5): The solution of (27) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 12.5720 23.0810 12.8820 15.4100 

0.5000 10.0430 34.4060 11.7050 15.2610 

0.7500 5.5735 52.4330 10.3810 15.8120 

1.0000 -2.4648 80.9900 8.7757 17.5710 

1.2500 -18.0330 126.0700 6.6624 21.7880 

1.5000 -51.3560 196.7600 3.6563 31.6960 

1.7500 -138.0100 305.8100 -0.8783 58.6080 

2.0000 -434.1300 463.5800 -7.4426 152.4400 

2.2500 -1849.9000 624.7200 -12.6950 605.5700 
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2.5000 -8392.3000 451.4500 -12.8500 2694.3000 

2.7500 -8817.7000 -550.5700 -11.9730 2616.9000 

3.0000 -1938.6000 -1335.8000 -6.4648 229.6600 

3.2500 -1351.0000 -2116.9000 -0.7328 3.2733 

3.5000 -1427.7000 -3281.8000 -0.0267 0.0049 

3.7500 -1519.8000 -5083.1000 -0.0007 0.0000 

4.0000 -1617.8000 -7872.9000 0.0000 0.0000 

4.2500 -1722.1000 -12194.0000 0.0000 0.0000 

4.5000 -1833.2000 -18886.0000 0.0000 0.0000 

4.7500 -1951.4000 -29251.0000 0.0000 0.0000 

5.0000 -2077.3000 -45305.0000 0.0000 0.0000 

 

 
Figure (3.2.17): The solution of (27) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.18) in the appendix. At α-level = 1, the 

solution is table (3.2.6) and graph is figure (3.2.19): 

 

 Table (3.2.6): The solution of (27) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

0.2500 14.9960 19.8320 14.0900 14.1740 

0.5000 14.4340 27.0140 13.2070 13.6120 

0.7500 12.9220 37.6960 12.2990 13.4140 

1.0000 9.7830 53.5930 11.2870 13.7600 

1.2500 3.7136 77.2630 10.0490 15.0080 

1.5000 -7.9541 112.5000 8.3919 17.9100 

1.7500 -31.7310 164.8200 5.9996 24.3420 

2.0000 -85.7130 241.8100 2.3669 39.6230 

2.2500 -232.6900 351.2100 -3.1089 82.5540 

2.5000 -743.8900 484.9300 -9.6621 235.6000 

2.7500 -2900.6000 545.8000 -12.2590 890.2000 

3.0000 -8648.5000 191.6700 -11.9300 2572.4000 

3.2500 -6566.2000 -607.9800 -9.5522 1519.8000 

3.5000 -3021.6000 -1168.6000 -2.8989 158.6000 
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3.7500 -2917.0000 -1729.9000 -0.1336 4.3821 

4.0000 -3291.0000 -2517.9000 -0.0010 0.0232 

4.2500 -3729.1000 -3663.5000 0.0000 0.0000 

4.5000 -4225.6000 -5330.3000 0.0000 0.0000 

4.7500 -4788.3000 -7755.6000 0.0000 0.0000 

5.0000 -5425.8000 -11284.0000 0.0000 0.0000 

 

 
Figure (3.2.19): The solution of (27) at α=1 

 

If 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then the model will be: 

𝑢′ = (0.25 +
𝛼

4
)𝑢 − 0.03𝑣𝑠  

𝑣′ = (1.75 −  
𝛼

4
)𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠  
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (28) 

We solve (28) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.20): 
  

 
Figure (3.2.20): The solution of (28) at α=0 
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At α-level = 0.5, the solution is figure (3.2.21) in the appendix. At α-level = 1, the 

solution is figure (3.2.22): 

 

 
Figure (3.2.22): The solution of (28) at α=1 

 

Now, If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡)is (1)-differentiable, then the model will 

be: 

𝑢′ = (1.75 −
𝛼

4
)𝑣 − 0.03𝑢𝑟 

𝑣′ = (0.25 +  
𝛼

4
)𝑢 − 0.03𝑣𝑠  

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (29) 

We solve (29) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.23): 

 

 
Figure (3.2.23): The solution of (29) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.24) in the appendix. At α-level = 1, the 

solution is figure (3.2.25): 
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Figure (3.2.25): The solution of (29) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, then the model will be: 

𝑢′ = (1.75 −
𝛼

4
)𝑣 − 0.03𝑢𝑟 

𝑣′ = (0.25 +  
𝛼

4
)𝑢 − 0.03𝑣𝑠  

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠  
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (30) 

 

We solve (30) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution graphs are figure (3.2.26), figure (3.2.27) and figure (3.2.28):  

 

 
Figure (3.2.26): The solution of (30) at α=0 for short time period 
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Figures (3.2.27) and (3.2.28): The solution of (30) at α=0 as time increases 

 

At 𝛼 =  0, as 𝑡 → ∞ ,  𝑢(𝑡) → 76.5 , 𝑣(𝑡) → 20.92, 𝑟(𝑡) → 15.94  ,  𝑠(𝑡) →

30.49.  So the solution is asymptotically stable. 

At α-level = 0.5, the solution is figure (3.2.29) in the appendix. At α-level = 1, the 

solution graphs are figure (3.2.30), figure (3.2.31) and figure (3.2.32):  

 

 
Figure (3.2.30): The solution of (30) at α=1 for short time period  
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Figures (3.2.31) and (3.2.32): The solution of (30) at α=1 as time increases 

 

At α-level = 1, the solution is asymptotically stable since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) →

57.69 , 𝑣(𝑡) → 27.74 , 𝑟(𝑡) → 24.04  ,  𝑠(𝑡) → 34.67. 

Firstly, we assume (𝑎) a triangular fuzzy number then we note that when 

𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (1,1), (1,2) and (2,1)-differentiable, we obtain unacceptable and 

unstable solution, but at 𝛼 = 1 the solution is the same as the solution of the crisp 

case and it is stable. While, when 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, the solution 

is asymptotically stable. However, we note that 𝑢(𝑡) >  𝑣(𝑡)  for 𝑡 →  ∞, so there 

is no fuzzy solution for 𝑥(𝑡) but this solution is acceptable biologically. At 𝛼 =

1 the solution is the same as the solution of the crisp case. Secondly, we assume 

(𝑎) a trapezoidal fuzzy number then we obtain the same results for all cases of 

derivatives else at 𝛼 = 1, we have a solution not similar to the crisp case. So, we 

deduce that the triangular fuzzy number is better than the trapezoidal fuzzy 

number. Therefore, we want to discover the solution for the model (5) with fuzzy 

initial conditions when 𝑎 is a triangular fuzzy number with small support and then 

with large support. Thereafter, we compare between them. We choose form (2,2)-
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differentiable since we haven’t got a fuzzy solution for the rest forms of the 

derivative.  

We fuzzify 𝑎 by a triangular fuzzy number with small support. So, we let 𝑎 =

 (0.9999, 1, 1.0001) 𝑤𝑖𝑡ℎ  [𝑎]𝛼 = [0.9999 +
𝛼

10000
,  1.0001 −  

𝛼

10000
]. Then we 

have the following model: 

𝑢′ = (1.0001 −  
𝛼

10000
)𝑣 − 0.03𝑢𝑟  

𝑣′ = (0.9999 +
𝛼

10000
)𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠  
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠 = 16 − 𝛼               (31) 

We solve (31) by Runge-Kutta method in Matlab at α-level=0. The solution is table 

(3.2.7), where its graph is figure (3.2.33): 

 

Table (3.2.7): The solution of (31) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

5.0000 74.4350 74.3420 65.8540 65.9210 

10.0000 8.8663 8.8636 20.4870 20.4970 

15.0000 124.3000 124.2800 31.5100 31.5120 

20.0000 6.5222 6.5213 29.1380 29.1400 

25.0000 83.8760 83.8660 14.7660 14.7670 

30.0000 6.9470 6.9459 42.2360 42.2390 

35.0000 42.0810 42.0770 11.6830 11.6840 

40.0000 12.2560 12.2550 60.0920 60.0970 

45.0000 20.0960 20.0930 12.9540 12.9550 

50.0000 40.8910 40.8840 73.2820 73.2870 

55.0000 10.4940 10.4920 17.2980 17.2990 

60.0000 118.7900 118.7700 46.5670 46.5700 

65.0000 6.7008 6.6999 25.0360 25.0380 

70.0000 104.0900 104.0800 17.8040 17.8050 

75.0000 6.0236 6.0227 37.2960 37.2990 

80.0000 51.6560 51.6500 11.4840 11.4840 

85.0000 9.3957 9.3941 55.2940 55.2980 

90.0000 23.3490 23.3460 12.0560 12.0570 

95.0000 29.7430 29.7380 73.3640 73.3700 

100.0000 11.3660 11.3640 15.9880 15.9900 
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Figure (3.2.33): The solution of (31) at α=0 

 

We try to understand the behavior of the solution for long time intervals. So, we 

note that 𝑢(𝑡) > 𝑣(𝑡) 𝑎𝑠 𝑡 → ∞ but the difference 𝑢(𝑡) − 𝑣(𝑡) ≈0.0005. 

 

Then, we fuzzify 𝑎 by a triangular fuzzy number with large support. So, we let 𝑎 =

 (0.02, 1, 1.98) 𝑤𝑖𝑡ℎ  [𝑎]𝛼 = [0.02 + 0.98𝛼,  1.98 − 0.98𝛼]. Then we have the 

following model:  

𝑢′ = (1.98 − 0.98𝛼)𝑣 − 0.03𝑢𝑟  
𝑣′ = (0.02 + 0.98𝛼)𝑢 − 0.03𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠  
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼              (32) 

We solve (32) by Runge-Kutta method in Matlab at α-level=0. The solution is table 

(3.2.8), where its graph is figure (3.2.34): 

  

Table (3.2.8): The solution of (32) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

50.0000 173.8800 6.5124 3.5855 18.3930 

100.0000 181.0000 8.3602 3.0222 14.1360 

150.0000 184.8100 8.6684 3.0637 14.1650 

200.0000 185.1100 8.6557 3.0834 14.2590 

250.0000 185.0600 8.6470 3.0845 14.2680 

300.0000 185.0500 8.6449 3.0849 14.2640 

350.0000 185.0600 8.6433 3.0857 14.2610 

400.0000 185.0400 8.6462 3.0843 14.2660 

450.0000 185.0400 8.6466 3.0841 14.2670 

500.0000 185.0600 8.6427 3.0860 14.2600 

550.0000 185.0400 8.6477 3.0835 14.2690 

600.0000 185.0300 8.6485 3.0831 14.2700 

650.0000 185.0400 8.6473 3.0837 14.2680 
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700.0000 185.0400 8.6481 3.0834 14.2690 

750.0000 185.0100 8.6527 3.0810 14.2780 

800.0000 185.0400 8.6475 3.0836 14.2690 

850.0000 185.0100 8.6536 3.0806 14.2790 

900.0000 185.0600 8.6440 3.0854 14.2620 

950.0000 185.0600 8.6426 3.0861 14.2600 

1000.0000 185.0400 8.6473 3.0837 14.2680 

 

 
Figure (3.2.34): The solution of (32) at α=0 

 

From previous table and graph we note that 𝑢(𝑡) > 𝑣(𝑡) 𝑎𝑠 𝑡 → ∞ with large 

difference. 

 

We compare between a triangular fuzzy number of small support with other of 

large support, and we note that when the support is large the difference 

between 𝑢(𝑡) and 𝑣(𝑡) is clear but when the support is small the difference 

between 𝑢(𝑡) and 𝑣(𝑡) isn’t clear and close to the solution of the model with crisp 

𝑎. Therefore, as the support of the triangular fuzzy number is small and close to the 

crisp number, the solution will be more periodic and closer to the crisp solution.  

 

Finally, we try to discover the behavior of the solution of model (5) with fuzzy 

initial conditions by assuming (𝑎) a triangular fuzzy number with support such that 

the distance between its endpoints and the core is unequal. Figure (3.2.35) and 

figure (3.2.36) show the solution of model (5) with initial conditions [𝑥0]𝛼 =
[14 + 𝛼, 16 − 𝛼] = [𝑦0]𝛼 when 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable at 𝛼 −

𝑙𝑒𝑣𝑒𝑙 = 0, for 𝑎 = (0.2,1,1.2) and 𝑎 = (0.95,1,1.8), respectively.  

When 𝑎 = (0.2,1,1.2), we get the following model: 

𝑥′(𝑡) = (0.2,1,1.2)𝑥 − 0.03𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

[𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼] = [𝑦0]𝛼                                 (33) 
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When 𝑎 = (0.95,1,1.8), we get the following model: 

𝑥′(𝑡) = (0.95,1,1.8)𝑥 − 0.03𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

[𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼] = [𝑦0]𝛼                                  (34) 

 

 

Figure (3.2.35): The solution of (33) at α=0 for 𝑥(𝑡)𝑎𝑛𝑑 𝑦(𝑡) are (2)-

differentiable  

 

Figure (3.2.36): The solution of (34) at α=0 for 𝑥(𝑡)𝑎𝑛𝑑 𝑦(𝑡) are (2)-

differentiable 

From figures (3.2.35) and (3.2.36), we note that the solutions are asymptotically 

stable. So, we conclude that for a fuzzy number 𝑎 = (𝑎1, 𝑎2, 𝑎3) whenever at least 

one of the differences (𝑎2 − 𝑎1), (𝑎2 − 𝑎3) increased  then the solution will be 

asymptotically stable. And vice versa, when 𝑎1 𝑎𝑛𝑑 𝑎3 are closer to the core 𝑎2, 

the solution is closer to the crisp case. 
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Now, we try to fuzzify 𝑏 = 0.03. Initially using triangular fuzzy number, we let 

𝑏 = (0.01 ,0.03 , 0.05). So, [𝑏]𝛼 = [0.01 +
𝛼

50
,  0.05 −

𝛼

50
] and we have the 

following model: 

𝑥′(𝑡) = 𝑥 − (0.01 ,0.03 , 0.05)𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

With fuzzy initial conditions: 
[𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼] = [𝑦0]𝛼 

If we consider 𝑥(𝑡) and 𝑦(𝑡) are (1)-differentiable, then the model will be: 

𝑢′ = 𝑢 − (0.05 −
𝛼

50
)𝑣𝑠 

𝑣′ = 𝑣 − (0.01 +
𝛼

50
)𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                (35) 

 

The first equilibrium point of (35) is (0,0,0,0) for any α –level. The second one 

varies according to the α–level, as in the following table (3.2.9) 

Table (3.2.9): The equilibrium points of (35) 
𝛼 − 𝑙𝑒𝑣𝑒𝑙 𝑢 𝑣 𝑟 𝑠 

0 68.399 23.3921 34.1995 58.4804 

0.5 50.3968 31.748 31.498 39.685 

1 40 40 33.3333 33.3333 

 

we solve (35) by Runge-Kutta method in Matlab at α-level=0,0.5,1. At α-level = 0, 

the solution is table (3.2.10) and its graph is figure (3.2.37):  

 

Table (3.2.1): The solution of (35) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 14.0100 20.0060 12.9070 15.3560 

0.5000 13.1760 25.2070 11.8160 14.9700 

0.7500 10.9280 31.9730 10.6690 14.9050 

1.0000 6.3389 40.7970 9.3889 15.2620 

1.2500 -2.1152 52.3140 7.8782 16.2140 

1.5000 -17.0440 67.3380 6.0241 18.0560 

1.7500 -43.0430 86.8490 3.7276 21.3220 
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2.0000 -88.6620 111.9200 0.9821 27.0220 

2.2500 -170.6300 143.5000 -1.9743 37.1870 

2.5000 -323.6500 182.0000 -4.4848 56.1750 

2.7500 -625.4900 226.9400 -5.7279 94.2230 

3.0000 -1265.1000 276.7900 -5.6989 177.5400 

3.2500 -2741.2000 325.8100 -5.5265 378.4800 

3.5000 -6377.7000 351.9200 -5.5885 891.9700 

3.7500 -14713.0000 294.3400 -5.5922 2056.9000 

4.0000 -26366.0000 64.2780 -5.1018 3353.6000 

4.2500 -29651.0000 -280.6100 -3.4867 2562.6000 

4.5000 -28443.0000 -556.3500 -1.2642 881.1500 

4.7500 -32360.0000 -768.2100 -0.2127 167.6300 

5.0000 -40674.0000 -995.0200 -0.0189 18.6630 

 

 
Figure (3.2.37): The solution of (35) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.38) in the appendix. At α-level = 1, the 

solution is figure (3.2.39):  

 

 
Figure (3.2.39): The solution of (35) at α=1 

 



64 
 

While 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then the model will 

be: 

𝑢′ = 𝑢 − (0.05 −
𝛼

50
)𝑣𝑠  

𝑣′ = 𝑣 − (0.01 +
𝛼

50
)𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟  

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                (36) 

We solve (36) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is table (3.2.11), where its graph is figure (3.2.40): 

Table (3.2.11): The solution of (36) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.5000 13.4700 25.1650 12.8300 13.9430 

1.0000 8.8983 40.5230 12.4000 12.0750 

1.5000 -3.8096 66.4900 12.7820 10.0690 

2.0000 -30.4190 110.9000 13.8750 7.2584 

2.5000 -73.7510 187.4200 14.5780 2.5670 

3.0000 -116.8800 317.2500 10.8370 -3.7206 

3.5000 -121.0900 527.5900 -1.6578 -5.8170 

4.0000 -121.6100 864.2700 -11.5930 -0.5437 

4.5000 -287.0500 1418.7000 4.2701 3.2886 

5.0000 -415.1800 2345.3000 -7.2862 -0.1676 

5.5000 -713.0700 3865.3000 -5.6272 0.7536 

6.0000 -1216.4000 6375.8000 -1.4206 -1.9897 

6.5000 -2024.1000 10510.0000 1.6793 -1.5380 

7.0000 -3336.6000 17325.0000 2.8722 0.5984 

7.5000 -5478.6000 28564.0000 0.2206 1.1360 

8.0000 -9026.5000 47095.0000 -0.9066 0.8421 

8.5000 -14898.0000 77648.0000 1.7127 0.1173 

9.0000 -24555.0000 128020.0000 1.2120 -0.3156 

9.5000 -40480.0000 211070.0000 1.1247 0.0875 

10.0000 -66728.0000 348000.0000 -0.7788 -0.2136 
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Figure (3.2.40): The solution of (36) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.41) in the appendix. At α-level = 1, the 

solution is figure (3.2.42):  

 

 
Figure (3.2.42): The solution of (36) at α=1 

 

Now, if 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then the model will 

be: 

𝑢′ = 𝑣 − (0.01 +
𝛼

50
)𝑢𝑟 

𝑣′ = 𝑢 − (0.05 −
𝛼

50
)𝑣𝑠  

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟  
𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (37) 

We solve (37) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.43): 
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Figure (3.2.43): The solution of (37) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.44) in the appendix. At α-level = 1, the 

solution is figure (3.2.45):  

 

 
Figure (3.2.45): The solution of (37) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, then the model will be: 

𝑢′ = 𝑣 − (0.01 +
𝛼

50
)𝑢𝑟  

𝑣′ = 𝑢 − (0.05 −
𝛼

50
)𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠  
𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (38) 

 

We solve (38) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution graphs are figure (3.2.46) and figure (3.2.47):  
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Figure (3.2.46): The solution of (38) at α=0 for short time period  

 

 
Figure (3.2.47): The solution of (38) at α=0 as time increases 

 

At 𝛼 =  0, as 𝑡 → ∞ ,  𝑢(𝑡) → 68.40 , 𝑣(𝑡) → 23.39 , 𝑟(𝑡) → 34.20 and 𝑠(𝑡) →

58.48. So the solution is asymptotically stable for 𝑦(𝑡) but there is no fuzzy 

solution for 𝑥(𝑡).  

At α-level = 0.5, the solution graphs are figure (3.2.48) and figure (3.2.49) and 

figure (3.2.50) in the appendix. At α-level = 1, the solution is figure (3.2.51): 

 

 
Figure (3.2.51): The solution of (38) at α=1  
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Now, we let 𝑏 = (0.01, 0.025, 0.035, 0.04) a trapezoidal fuzzy number. So, 

[𝑏]𝛼 = [0.015 +
𝛼

100 
 ,  0.045 −

𝛼

100
]  𝑎nd we obtain the following model: 

𝑥′(𝑡) = 𝑥 − (0.01, 0.025, 0.035, 0.04)𝑥𝑦 
𝑦′(𝑡) = −0.4 𝑦 + 0.01𝑥𝑦 

With fuzzy initial conditions: 

[𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼] , [𝑦0]𝛼 = [14 + 𝛼, 16 − 𝛼]  
 

If 𝑥(𝑡) and 𝑦(𝑡) are (1)-differentiable, then the model will be: 

𝑢′ = 𝑢 − (0.045 −
𝛼

100
)𝑣𝑠 

𝑣′ = 𝑣 − (0.015 +
𝛼

100 
)𝑢𝑟 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼              (39) 

The first equilibrium point is (0,0,0,0) for any α –level but the second equilibrium 

point varies according to the α–level, as in the following table (3.2.12) 

Table (3.2.12): The equilibrium points of (39) 
α- level 𝑢 𝑣 𝑟 𝑠 

0 57.69 27.7345 32.05 46.2241 

0.5 50.3968 31.748 31.498 39.685 

1 44.7476 35.7561 31.9625 35.7561 

 

We solve (39) by Runge-Kutta method in Matlab at α-level= 0,0.5,1. At α-level = 

0, the solution is table (3.2.13), where its graph is figure (3.2.52): 

  

Table (3.2.13): The solution of (39) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 14.4330 19.7270 12.9140 15.3500 

0.5000 14.2900 24.5680 11.8480 14.9450 

0.7500 13.1340 30.8770 10.7520 14.8400 

1.0000 10.2460 39.1270 9.5600 15.1240 

1.2500 4.4370 49.9420 8.1833 15.9510 

1.5000 -6.3388 64.1270 6.5108 17.5840 

1.7500 -25.6770 82.6750 4.4207 20.4940 

2.0000 -60.2670 106.6800 1.8319 25.5690 

2.2500 -123.1100 137.0700 -1.1711 34.5800 

2.5000 -240.9100 173.9500 -4.1255 51.2660 

2.7500 -471.8200 215.7000 -6.1079 84.0460 

3.0000 -949.3200 258.5200 -6.5279 152.9700 
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3.2500 -1990.8000 294.5400 -6.2192 307.2000 

.5000 -4299.9000 301.0600 -6.0920 654.4300 

3.7500 -8773.2000 226.0200 -5.9265 1296.5000 

4.0000 -13942.0000 17.0820 -5.2176 1807.2000 

4.2500 -15552.0000 -263.9200 -3.4695 1327.2000 

4.5000 -15737.0000 -497.7300 -1.3279 505.1700 

4.7500 -18162.0000 -688.9200 -0.2630 114.3500 

5.0000 -22800.0000 -894.2000 -0.0292 15.9290 

 

 
Figure (3.2.52): The solution of (39) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.53) in the appendix. At α-level = 1, the 

solution is table (3.2.14), where its graph is figure (3.2.54): 

 

Table (3.2.14): The solution of (39) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

0.2500 16.9140 17.6170 14.1240 14.1360 

0.5000 19.1010 20.8700 13.3640 13.4220 

0.7500 21.5580 24.9230 12.7120 12.8680 

1.0000 24.2490 29.9860 12.1570 12.4910 

1.2500 27.0840 36.3360 11.6820 12.3230 

1.5000 29.8650 44.3390 11.2640 12.4160 

1.7500 32.2090 54.4920 10.8640 12.8610 

2.0000 33.3740 67.4800 10.4110 13.8160 

2.2500 31.9440 84.2720 9.7847 15.5680 

2.5000 25.1020 106.2600 8.7682 18.6720 

2.7500 7.0723 135.4100 7.0017 24.2700 

3.0000 -35.0690 174.2200 3.9696 34.9550 

3.2500 -132.6000 224.4200 -0.7368 57.1450 

3.5000 -367.6600 281.8500 -6.2956 108.0400 

3.7500 -958.8600 325.8500 -9.3968 233.6200 

4.0000 -2392.3000 316.0100 -9.0121 531.3700 

4.2500 -5047.8000 186.6400 -8.2443 1030.9000 
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4.5000 -7146.5000 -96.7960 -6.7433 1182.3000 

4.7500 -6992.5000 -401.0100 -3.7767 626.4700 

5.0000 -7133.9000 -629.7400 -1.0548 170.6200 

 

 
Figure (3.2.54): The solution of (39) at α=1 

 

While 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then the model will 

be as follow: 

𝑢′ = 𝑢 − (0.045 −
𝛼

100
)𝑣𝑠 

𝑣′ = 𝑣 − (0.015 +
𝛼

100 
)𝑢𝑟 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼            (40) 

We solve (40) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.55): 

 

 
Figure (3.2.55): The solution of (40) at α=0 
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At α-level = 0.5, the solution is figure (3.2.56) in the appendix. At α-level = 1, the 

solution is figure (3.2.57): 

  

 
Figure (3.2.57): The solution of (40) at α=1 

 

If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then we have the 

following model: 

𝑢′ = 𝑣 − (0.015 +
𝛼

100 
)𝑢𝑟 

𝑣′ = 𝑢 − (0.045 −
𝛼

100
)𝑣𝑠 

𝑟′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑠′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (41) 

We solve (41) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.58): 

  

 
Figure (3.2.58): The solution of (41) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.59) in the appendix. At α-level = 1, the 

solution is figure (3.2.60):  
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Figure (3.2.60): The solution of (41) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) is (2)-differentiable, then we have the following model: 

𝑢′ = 𝑣 − (0.015 +
𝛼

100 
)𝑢𝑟 

𝑣′ = 𝑢 − (0.045 −
𝛼

100
)𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (42) 

We solve (42) by Runge-Kutta method in Matlab at α-level=  0, 0.5, 1. At α-level 

= 0, the solution graphs are figure (3.2.61) and figure (3.2.62):  

 

 
Figure (3.2.61): The solution of (42) at α=0 for short time period  
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Figure (3.2.62): The solution of (42) at α=0 as time increases 

 

We can note that the solution of 𝑦(𝑡) is asymptotically stable while there is no 

fuzzy solution for 𝑥(𝑡) since as 𝑡 → ∞ ,  𝑢(𝑡) → 57.7 , 𝑣(𝑡) → 27.74 , 𝑟(𝑡) →

32.50 ,  𝑠(𝑡) → 46.22  and u(𝑡) > 𝑣(𝑡). 

At α-level = 0.5, the solution graphs are figure (3.2.63), figure (3.2.64) and figure 

(3.2.65) in the appendix. At α-level = 1, the solution graphs are figure (3.2.66), 

figure (3.2.67) and figure (3.268):  

 

 
Figure (3.2.66): The solution of (42) at α=1 for short time period  
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Figures (3.2.67) and (3.2.68): The solution of (42) at α=1 as time increases 

 

At α-level=1, as 𝑡 → ∞ ,  𝑢(𝑡) → 44.74 , 𝑣(𝑡) → 35.76 , 𝑟(𝑡) → 31.96 and 𝑠(𝑡) →
35.76. So the solution is asymptotically stable but there is no fuzzy solution for  

𝑥(𝑡) and the solution isn’t equal to the crisp one. 
 

For 𝑏 = 0.03. Firstly, we assume it a triangular fuzzy number, then we obtain 

fuzzy unacceptable and unstable solution when 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (1,1), (1,2) and 

(2,1)-differentiable, but at 𝛼 = 1 the solution is equivalent to the crisp case. While, 

when 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable, the solution is asymptotically stable, 

but we note that 𝑢(𝑡) > 𝑣(𝑡) 𝑎𝑠 𝑡 →  ∞, so there is no fuzzy solution for 𝑥(𝑡) but 

this solution is acceptable biologically. At 𝛼 = 1 the solution is the same as the 

solution of the crisp case. Secondly, we assume 𝑏 a trapezoidal fuzzy number then 

we obtain the same results for all cases of derivatives else at 𝛼 = 1 the solution not 

similar to the crisp case. So the triangular fuzzy number is better than the 

trapezoidal fuzzy number. So we compare between a triangular fuzzy number of 

small support with other of large support. We choose the case when 𝑥(𝑡) and 𝑦(𝑡) 

are (2)-differentiable since we haven’t get a fuzzy solution for the rest forms of the 

derivative.  

Therefore, we let 𝑏 =  (0.029, 0.03, 0.031) a triangular fuzzy number with small 

support. So, [𝑏]𝛼 = [0.029 +
𝛼

1000
,  0.031 −

𝛼

1000
]. Then we have the following 

model for 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable: 

𝑢′ = 𝑣 − (0.029 +
𝛼

1000 
)𝑢𝑟 

𝑣′ = 𝑢 − (0.031 −
𝛼

1000
)𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 
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𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (43) 

We solve (43) by Runge-Kutta method in Matlab at α-level=0. The solution is 

figure (3.2.69) and figure (3.2.70): 

 

 
Figure (3.2.69): The solution of (43) at α=0 for short time period  

 

 
Figure (3.2.70): The solution of (43) at α=0 as time increases 

 

From previous figures we can note that the solution is periodic and stable but it’s 

clear that 𝑢(𝑡) > 𝑣(𝑡) 𝑎𝑠 𝑡 → ∞. So this solution is fuzzy unacceptable. 

While when 𝑏 =  (0.005, 0.03, 0.055) a triangular fuzzy number of large support 

with 𝛼 − 𝑙𝑒𝑣𝑒𝑙 [𝑏]𝛼 = [0.005 +
𝛼

40
,  0.055 −

𝛼

40
]  we have the following model 

for 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable: 

𝑢′ = 𝑣 − (0.005 +
𝛼

40 
)𝑢𝑟 

𝑣′ = 𝑢 − (0.055 −
𝛼

40
)𝑣𝑠 

𝑟′ = −0.4𝑟 + 0.01𝑣𝑠 

𝑠′ = −0.4𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (44) 
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We solve (44) in Matlab at α-level= 0. The solution is figure (3.2.71): 

 
Figure (3.2.71): The solution of (44) at α=0  

 

Here we can see that the solution is asymptotically stable but 𝑢(𝑡) > 𝑣(𝑡) 𝑎𝑠 𝑡 →
∞ with large difference. So this solution is fuzzy unacceptable. 

 

In addition, we assume 𝑏 a fuzzy triangular fuzzy number with support such that 

the distance between it endpoints and the core unequal. For example 𝑏 =
(0.01,0.03,0.035) and 𝑏 = (0.025,0.03,0.05). Figure (3.2.72) and figure (3.2.73) 

show the solution with fuzzy initial conditions [𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼] =
[𝑦0]𝛼 and fuzzy number 𝑏 when 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable at 𝛼 = 0. 

 

 
Figure (3.2.72) : The solution when 𝑏 = (0.01,0.03,0.035)  
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Figure (3.2.73) : The solution when 𝑏 = (0.025,0.03,0.05)  

 

From figures (3.2.72) and (3.2.73), we note that the solutions are asymptotically 

stable. So, we conclude that for any fuzzy number 𝑏 = (𝑏1, 𝑏2, 𝑏3) whenever at 

least one of the differences (𝑏2 − 𝑏1), (𝑏2 − 𝑏3) increased  then the solution will 

be asymptotically stable. And when 𝑏1 𝑎𝑛𝑑 𝑏3 are closer to the core 𝑏2, the 

solution will be periodic with small difference between 𝑢(𝑡) and 𝑣(𝑡). 

Now, we want to make 𝑐 a fuzzy number using triangular fuzzy number and then 

using trapezoidal fuzzy number. First, We assume that 𝑐 = (0.3 ,0.4 , 0.5) a 

triangular fuzzy number. Therefore , [𝑐]𝛼 = [0.3 +
𝛼

10
,  0.5 −

𝛼

10
]. 

If  𝑥(𝑡) and 𝑦(𝑡) are (1)-differentiable, then we have the following model: 

 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −(0.5 −
𝛼

10
)𝑠 + 0.01𝑢𝑟  

𝑠′ = −(0.3 +
𝛼

10
)𝑟 + 0.01𝑣𝑠 

With the initial conditions: 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼             (45) 

 

The first equilibrium point is (0,0,0,0) for any α –level. The second equilibrium 

point varies according to the α–level, as in the following table (3.2.15) 

Table (3.2.15): The equilibrium points of (45) 
𝛼 – 𝑙𝑒𝑣𝑒𝑙 𝑢 𝑣 𝑟 𝑠 

0 35.5689 42.1716 39.521 28.1144 

0.5 38.0583 41.3839 36.246 30.6547 

1 40 40 33.3333 33.3333 
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We solve (45) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is table (3.2.16), where its graph is figure (3.2.74): 

  

Table (3.2.16): The solution of (45) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.6400 18.8740 12.5120 15.6940 

0.5000 17.3420 22.5800 11.0420 15.6170 

0.7500 18.9540 27.4000 9.5478 15.8210 

1.0000 20.1910 33.7140 7.9689 16.3860 

1.2500 20.5370 42.0430 6.2245 17.4430 

1.5000 19.0460 53.0800 4.2053 19.2130 

1.7500 14.0070 67.7020 1.7694 22.0770 

2.0000 2.2023 86.8740 -1.2425 26.7250 

2.2500 -22.4530 111.2900 -4.9405 34.4490 

2.5000 -71.8880 140.1800 -9.1796 47.7560 

2.7500 -168.9300 168.9800 -13.1690 71.3570 

3.0000 -353.9000 186.2200 -15.2740 113.1000 

3.2500 -678.4800 175.5100 -14.4500 180.5400 

3.5000 -1159.2000 123.5700 -12.2340 266.1300 

3.7500 -1687.6000 24.0060 -10.1170 324.1100 

4.0000 -2063.1000 -112.8500 -7.6342 292.1300 

4.2500 -2280.7000 -258.9700 -4.5698 183.7400 

4.5000 -2574.3000 -397.6000 -1.8955 80.8910 

4.7500 -3112.2000 -536.8000 -0.5059 25.2500 

5.0000 -3926.8000 -696.5800 -0.0870 5.4459 

 

 
Figure (3.2.74): The solution of (45) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.75) in the appendix. At α-level = 1, the 

solution is figure (3.2.76):  
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Figure (3.2.76): The solution of (45) at α=1 

 

If 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then we have the 

following model: 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −(0.3 +
𝛼

10
)𝑟 + 0.01𝑣𝑠  

𝑠′ = −(0.5 −
𝛼

10
)𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼              (46) 

We solve (46) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is table (3.2.17), where its graph is figure (3.2.77): 

  

Table (3.2.17): The solution of (46) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.7230 18.8030 13.6270 14.6020 

0.5000 17.7560 22.2290 13.3310 13.4150 

0.7500 20.1410 26.4170 13.1210 12.4270 

1.0000 22.9140 31.5350 13.0090 11.6270 

1.2500 26.1050 37.7890 13.0100 11.0100 

1.5000 29.7240 45.4270 13.1470 10.5730 

1.7500 33.7450 54.7510 13.4520 10.3230 

2.0000 38.0730 66.1270 13.9730 10.2670 

2.2500 42.5050 79.9960 14.7780 10.4220 

2.5000 46.6490 96.9050 15.9650 10.8090 

2.7500 49.8270 117.5400 17.6770 11.4500 

3.0000 50.9060 142.8300 20.1220 12.3470 

3.2500 48.1020 174.1600 23.5860 13.4500 

3.5000 38.8070 213.9400 28.4200 14.5430 

3.7500 19.6630 266.5900 34.9540 15.0400 

4.0000 -11.9930 340.6500 42.9980 13.6420 



80 
 

4.2500 -53.2220 450.1400 50.5310 8.3645 

4.5000 -84.9120 609.2100 51.2630 -1.3572 

4.7500 -71.7490 814.8800 36.5320 -10.0670 

5.0000 -2.6443 1056.3000 8.3466 -11.4290 

 

 
Figure (3.2.77): The solution of (46) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.78) in the appendix. At α-level = 1, the 

solution is figure (3.2.79):  

 

 
Figure (3.2.79): The solution of (46) at α=1 

 

If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then we have the 

following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −(0.5 −
𝛼

10
)𝑠 + 0.01𝑢𝑟  

𝑠′ = −(0.3 +
𝛼

10
)𝑟 + 0.01𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (47) 
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At α-level = 0, the solution is figure (3.2.80): 

 

 
Figure (3.2.80): The solution of (47) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.81) in the appendix. At α-level = 1, the 

solution is figure (3.2.82):  

 

 
Figure (3.2.82): The solution of (46) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, then we have the following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −(0.3 +
𝛼

10
)𝑟 + 0.01𝑣𝑠  

𝑠′ = −(0.5 −
𝛼

10
)𝑠 + 0.01𝑢𝑟 

With the initial conditions: 
𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼              (48) 
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We solve this model by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-

level = 0, the solution graphs are figure (3.2.83), figure (3.2.84) and figure 

(3.2.85):  

 

 
Figure (3.2.83): The solution of (48) at α=0 for short time period 

 

 
 

  
Figures (3.2.84) and (3.2.85): The solution of (48) at α=0 as time increases 
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At 𝛼 − 𝑙𝑒𝑣𝑒𝑙 = 0, the solution is asymptotically stable and there is no fuzzy 

solution for 𝑦(𝑡) since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 35.57 , 𝑣(𝑡) → 42.17 , 𝑟(𝑡) →

39.52  𝑎𝑛𝑑  𝑠(𝑡) → 28.2,  and  𝑟(𝑡) > 𝑠(𝑡) 𝑎𝑠 𝑡 → ∞. 

 

At α-level = 0.5, the solution graphs are figure (3.2.86), figure (3.2.87) and figure 

(3.2.88) in the appendix. At α-level = 1, the solution is figure (3.2.89): 

 

 
Figure (3.2.89): The solution of (48) at α=1 

 

Then, we assume 𝑐 = (0.25,0.35 ,0.45 , 0.55) a trapezoidal fuzzy number with α-

level [𝑐]𝛼 = [0.25 +
𝛼

10
,  0.55 −

𝛼

10
]. If 𝑥(𝑡) and 𝑦(𝑡) are (1)-differentiable, then 

we have the following model: 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −(0.55 −
𝛼

10
)𝑠 + 0.01𝑢𝑟  

𝑠′ = −(0.25 +
𝛼

10
)𝑟 + 0.01𝑣𝑠 

With the initial conditions: 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼               (49) 

 

The equilibrium points of (49) is (0,0,0,0) for any α –level. However, the model 

has another equilibrium point which varies according to the α–level, as in the 

following table (3.2.18). 

Table (3.2.18): The equilibrium points of (49) 
𝛼 − 𝑙𝑒𝑣𝑒𝑙 𝑢 𝑣 𝑟 𝑠 

0 32.5148 42.2885 42.353 25.6294 
0.5 35.5689 42.1716 39.521 28.1144 
1 38.0583 41.3839 36.246 30.6547 



84 
 

We solve model (49) by Runge-Kutta method in Matlab at α-level= 0, 0.5, 1. At α-

level = 0, the solution is table (3.2.19) and figure (3.2.90): 

Table (3.2.19): The solution of (49) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.6270 18.8870 12.2980 15.8700 

0.5000 17.2740 22.6470 10.5810 15.9770 

0.7500 18.7540 27.5880 8.7972 16.3810 

1.0000 19.7200 34.1290 6.8738 17.1760 

1.2500 19.5470 42.8340 4.7148 18.5170 

1.5000 17.0990 54.4330 2.1959 20.6630 

1.7500 10.3210 69.7840 -0.8310 24.0600 

2.0000 -4.6197 89.6510 -4.4973 29.5160 

2.2500 -34.8550 114.0700 -8.7980 38.5050 

2.5000 -93.8280 140.6800 -13.3050 53.7550 

2.7500 -205.1200 162.1200 -16.7830 79.8230 

3.0000 -402.6200 164.8200 -17.5550 122.1400 

3.2500 -710.9100 134.9300 -15.5090 180.3200 

3.5000 -1097.0000 66.1940 -12.7320 234.7800 

3.7500 -1446.2000 -38.8330 -10.0990 245.2400 

4.0000 -1674.0000 -165.1200 -7.0575 190.9200 

4.2500 -1864.8000 -293.8800 -3.8209 107.7300 

4.5000 -2175.1000 -420.5200 -1.4306 44.2160 

4.7500 -2684.7000 -556.3400 -0.3533 13.1130 

5.0000 -3410.7000 -718.6800 -0.0570 2.6875 

 

 
Figure (3.2.90): The solution of (49) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.91) in the appendix. At α-level = 1, the 

solution is table (3.2.20) and figure (3.2.92): 
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Table (3.2.20): The solution of (49) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

0.2500 17.2550 17.2820 13.9330 14.3240 

0.5000 19.9320 20.0700 12.9760 13.8020 

0.7500 23.0830 23.4820 12.1170 13.4440 

1.0000 26.7500 27.6740 11.3450 13.2680 

1.2500 30.9490 32.8430 10.6430 13.3070 

1.5000 35.6420 39.2560 9.9883 13.6120 

1.7500 40.6780 47.2700 9.3452 14.2660 

2.0000 45.6910 57.3850 8.6537 15.4080 

2.2500 49.8990 70.3170 7.8113 17.2760 

2.5000 51.6660 87.1200 6.6382 20.3080 

2.7500 47.6250 109.3500 4.8266 25.3440 

3.0000 30.4630 139.1400 1.8913 34.1450 

3.2500 -16.5190 178.5200 -2.7400 50.7070 

3.5000 -133.2000 225.6600 -9.0076 84.5930 

3.7500 -414.4700 263.7300 -14.2540 158.2300 

4.0000 -1033.1000 253.9100 -14.3050 308.4300 

4.2500 -2074.1000 159.5900 -11.8900 529.3500 

4.5000 -3030.2000 -32.9040 -9.7244 632.4100 

4.7500 -3232.1000 -267.1000 -6.5245 434.6900 

5.0000 -3245.0000 -471.1000 -2.7735 171.5300 

 

 
Figure (3.2.92): The solution of (49) at α=1 

 

While when 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, we have the 

following model: 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −(0.25 +
𝛼

10
)𝑟 + 0.01𝑣𝑠  

𝑠′ = −(0.55 −
𝛼

10
)𝑠 + 0.01𝑢𝑟 
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With the initial conditions: 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (50) 

We solve (50) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.93): 

 

 
Figure (3.2.93): The solution of (50) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.94) in the appendix. At α-level = 1, the 

solution is figure (3.2.95): 
 

 
Figure (3.2.95): The solution of (50) at α=1 

 

If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then we have the 

following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −(0.55 −
𝛼

10
)𝑠 + 0.01𝑢𝑟  

𝑠′ = −(0.25 +
𝛼

10
)𝑟 + 0.01𝑣𝑠 
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𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                (51) 

At α-level = 0, the solution is figure (3.2.96): 

  

 
Figure (3.2.96): The solution of (51) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.97) in the appendix. At α-level = 1, the 

solution is figure (3.2.98): 

 

 
Figure (3.2.98): The solution of (51) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, then we have the following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −(0.25 +
𝛼

10
)𝑟 + 0.01𝑣𝑠  

𝑠′ = −(0.55 −
𝛼

10
)𝑠 + 0.01𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                  (52) 
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We solve this model by Runge-Kutta method in Matlab at α-level= 0, 0.5, 1. At α-

level = 0, the solution graphs are figure (3.2.99), figure (3.2.100) and figure 

(3.2.101): 

 

Figure (3.2.99): The solution of (52) at α=0 for short time period 

 

 

  
Figures (3.2.100) and (3.2.101): The solution of (52) at α=0 as time increases 

 

At α-level = 0, 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 32.51 , 𝑣(𝑡) → 42.29, 𝑟(𝑡) → 43.35 ,  𝑠(𝑡) →
25.63.  So the solution is asymptotically stable but there is no fuzzy solution for 

𝑦(𝑡) since 𝑟(𝑡) > 𝑠(𝑡). 
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At α-level = 0.5, the solution graphs are figure (3.2.102), figure (3.2.103) and 

figure (3.2.104) in the appendix. At α-level = 1, the solution graphs are figure 

(3.2.105), figure (3.2.106) and figure (3.2.107): 

 

 

Figure (3.2.105): The solution of (52) at α=1 for short time period 

 

  
 

 
Figures (3.2.106) and (3.2.107): The solution of (52) at α=1 as time increases 
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At α-level = 1, 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 38.06 , 𝑣(𝑡) → 41.39, 𝑟(𝑡) → 36.24,  𝑠(𝑡) →

30.66. Therefore, the solution is asymptotically stable and there is no fuzzy 

solution for 𝑦(𝑡). 

From previous work, at  α <  1 we conclude that we obtain a biologically 

acceptable solution only when 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) are (2)-differentiable which is 

asymptotically stable to the equilibrium point whether for trapezoidal or triangular 

fuzzy number but we note that 𝑟(𝑡) > 𝑠(𝑡) 𝑓𝑜𝑟 𝑡 →  ∞, so there is no fuzzy 

solution for 𝑦(𝑡). At 𝛼 = 1 the solution is the same as the solution of the crisp case 

when 𝑐 a triangular fuzzy number but it isn’t when 𝑐 a trapezoidal fuzzy number. 

So, one more time the triangular fuzzy number is better than the trapezoidal fuzzy 

number. 

 

If we fuzzify 𝑐 by a triangular fuzzy number with small support , for example 𝑐 =

 (0.3999, 0.4, 0.4001) then the solution will be periodic and stable, but with large 

support, for example 𝑐 =  (0.1, 0.4, 0.7) the solution will be asymptotically stable. 

As in figures (3.2.108) and (3.2.109) we plot the solution of 𝑥(𝑡) and 𝑦(𝑡) when 

they are (2)-differentiable at α = 0. 

 

 

Figure (3.2.108): The solution of X(t) and Y(t) when 𝑐 =  (0.3999, 0.4, 0.4001) 
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Figure (3.2.109): The solution of X(t) and Y(t) when 𝑐 =  (0.1, 0.4, 0.7)  

 

In figure (3.2.108) the solution is oscillated about the equilibrium point so the 

solution is stable. We try to solve this in Matlab for too long time period and then 

we note that 𝑟(𝑡) > 𝑠(𝑡) with unclear difference but the difference is clear when 𝑐 

is a triangular fuzzy number with large support. 

 

Finally, we assume 𝑐 a triangular fuzzy number with support such that the distance 

between  its endpoints and the core unequal. Figure (3.2.110) and figure (3.2.111) 

show the solution of  𝑥(𝑡) and 𝑦(𝑡) when they are (2)-differentiable at α-level= 0 

when 𝑐 = (0.1,0.4,0.405) and 𝑐 = (0.395, 0.4 ,0.6), respectively.  

 

 

Figure (3.2.110): The solution of X(t) and Y(t) when 𝑐 =  (0.1, 0.4, 0.405)  



92 
 

 
Figure (3.2.111): The solution of X(t) and Y(t) when 𝑐 =  (0.395, 0.4 ,0.6)  

 

From previous figures we conclude that if the distance for at least one support 

endpoints is long from the core then the solution will be asymptotically stable. 

 

Now, we assume 𝑑 a fuzzy number. First, using triangular fuzzy number. we let  

𝑑 = (0.005 ,0.01 , 0.015) such that [𝑑]𝛼 = [0.005 +
𝛼

200
,  0.015 −

𝛼

200
]. Then if 

𝑥(𝑡) and 𝑦(𝑡) are (1)-differentiable, then we have the following model: 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + (0.005 +
𝛼

200
)𝑢𝑟  

𝑠′ = −0.4𝑟 + (0.015 −
𝛼

200
)𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (53) 

 

The equilibrium points of (53) is (0,0,0,0) for any α –level but the model has 

another equilibrium point which varies according to the α–level, as in the 

following table (3.2.21). 

Table (3.2.21): The equilibrium points of (53) 
𝛼 − 𝑙𝑒𝑣𝑒𝑙 𝑢 𝑣 𝑟 𝑠 

0 38.46 55.4689 48.075 23.112 

0.5 37.9402 44.9831 39.521 28.1144 

1 40 40 33.3333 33.3333 

 

We solve model (53) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-

level = 0, the solution is table (3.2.22) and figure (3.2.112): 
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Table (3.2.22): The solution of (53) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.6410 18.8640 12.6640 15.6980 

0.5000 17.3390 22.5370 11.3440 15.7100 

0.7500 18.9220 27.2870 9.9981 16.1200 

1.0000 20.0520 33.4870 8.5708 17.0690 

1.2500 20.0890 41.6510 6.9823 18.7960 

1.5000 17.8000 52.4740 5.1148 21.7340 

1.7500 10.7950 66.8510 2.7913 26.6920 

2.0000 -5.8359 85.7520 -0.2573 35.3210 

2.2500 -42.4270 109.6300 -4.4205 51.1180 

2.5000 -121.8800 135.9400 -10.1660 81.9190 

2.7500 -290.4000 151.4200 -17.5880 143.0400 

3.0000 -599.3200 115.3900 -24.9260 245.4100 

3.2500 -902.2300 -26.1100 -27.6720 303.6800 

3.5000 -896.1600 -239.4600 -23.3530 187.8100 

3.7500 -834.7100 -447.7200 -14.3160 52.4390 

4.0000 -963.0500 -649.4200 -5.9358 7.0522 

4.2500 -1220.2000 -865.6000 -1.6354 0.4969 

4.5000 -1565.4000 -1121.0000 -0.2943 0.0245 

4.7500 -2010.0000 -1441.2000 -0.0320 0.0013 

5.0000 -2580.9000 -1850.8000 -0.0019 0.0001 

 

 
Figure (3.2.112): The solution of (53) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.113) in the appendix. At α-level = 1, the 

solution is figure (3.2.114): 
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Figure (3.2.114): The solution of (53) at α=1 

 

When 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, we have the 

following model: 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + (0.015 −
𝛼

200
)𝑣𝑠 

𝑠′ = −0.4𝑠 + (0.005 +
𝛼

200
)𝑢𝑟  

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼              (54) 

 

We solve (54) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.115): 

  

 
Figure (3.2.115): The solution of (54) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.116) in the appendix. At α-level = 1, the 

solution is figure (3.2.117):  
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Figure (3.2.117): The solution of (54) at α=1 

 

If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then we have the 

following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −0.4𝑠 + (0.005 +
𝛼

200
)𝑢𝑟  

𝑠′ = −0.4𝑟 + (0.015 −
𝛼

200
)𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (55) 

At α-level = 0, the solution is figure (3.2.118): 

 

 
Figure (3.2.118): The solution of (55) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.119) in the appendix. At α-level = 1, the 

solution is figure (3.2.120): 
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Figure (3.2.120): The solution of (55) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, then we have the following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −0.4𝑟 + (0.015 −
𝛼

200
)𝑣𝑠 

𝑠′ = −0.4𝑠 + (0.005 +
𝛼

200
)𝑢𝑟  

With the initial conditions: 
𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (56) 

 

We solve this model by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-

level = 0, the solution graphs are figure (3.2.121), figure (3.2.122) and figure 

(3.2.123): 

 

 

Figure (3.2.121): The solution of (56) at α=0 for short time period 
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Figures (3.2.122) and (3.2.123): The solution of (56) at α=0 as time increases 

 

At α-level = 0, 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 38.  46, 𝑣(𝑡) → 55.46, 𝑟(𝑡) → 48.07 ,  𝑠(𝑡) →

23.11.  So the solution is asymptotically stable but there is no fuzzy solution for 

𝑦(𝑡) since 𝑟(𝑡) > 𝑠(𝑡). 

At α-level = 0.5, the solution graphs are figure (3.2.124), figure (3.2.125) and 

figure (3.2.126) in the appendix. At α-level = 1, the solution is figure (3.2.127): 

 

 

Figure (3.2.127): The solution of (56) at α=1  
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Now, we assume 𝑑 = (0.0025, 0.0075, 0.0125, 0.0175) such that [𝑑]𝛼 =

[0.0025 +
𝛼

200
,  0.0175 −

𝛼

200
]  a trapezoidal fuzzy number. Then if 𝑥(𝑡) and 𝑦(𝑡) 

are (1)-differentiable, then we have the following model: 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑠 + (0.0025 +
𝛼

200
)𝑢𝑟  

𝑠′ = −0.4𝑟 + (0.0175 −
𝛼

200
)𝑣𝑠 

With the initial conditions: 
𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                   (57) 

 

The equilibrium points of (57) is (0,0,0,0) for any α –level but the model has 

another equilibrium point which varies according to the α–level, as in the 

following table (3.2.23). 

Table (3.2.23): The equilibrium points of (57) 
𝛼 – 𝑙𝑒𝑣𝑒𝑙 𝑢 𝑣 𝑟 𝑠 

0 43.7241 83.6413 63.7644 17.4253 

0.5 38.46 55.4689 48.075 23.112 

1 37.9402 44.9831 39.521 28.1144 

 

We solve model (57) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-

level = 0, the solution is table (3.2.24) and figure (3.2.128): 

 

Table (3.2.24): The solution of (56) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 15.6280 18.8720 12.5310 15.8830 

0.5000 17.2660 22.5800 11.0540 16.1470 

0.7500 18.6900 27.4130 9.5221 16.9140 

1.0000 19.4590 33.7740 7.8682 18.3880 

1.2500 18.7220 42.2160 5.9972 20.9320 

1.5000 14.8030 53.4720 3.7609 25.2240 

1.7500 4.3409 68.4190 0.9214 32.5950 

2.0000 -19.8390 87.7440 -2.9275 45.8920 

2.2500 -73.4110 110.5200 -8.4842 71.4030 

2.5000 -190.4900 128.5600 -16.8940 122.7500 

2.7500 -416.7000 108.0200 -29.1160 214.1800 

3.0000 -648.6100 -28.2660 -42.1580 273.2700 

3.2500 -579.5700 -282.3200 -46.2860 144.5400 
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3.5000 -497.5600 -557.8000 -39.4790 24.8990 

3.7500 -585.5200 -871.6000 -29.0410 2.0055 

4.0000 -743.8700 -1253.9000 -19.2860 0.4268 

4.2500 -951.6500 -1718.4000 -11.4060 0.1728 

4.5000 -1220.1000 -2283.5000 -5.8143 0.0650 

4.7500 -1565.7000 -2978.7000 -2.4480 0.0208 

5.0000 -2010.1000 -3847.5000 -0.8060 0.0053 

 

 
Figure (3.2.128): The solution of (57) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.129) in the appendix. At α-level = 1, the 

solution is table (3.2.25) and figure (3.2.130):  

 

Table (3.2.25): The solution of (57) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 15.0000 15.0000 15.0000 15.0000 

0.2500 17.2580 17.2790 13.9740 14.2880 

0.5000 19.9440 20.0570 13.0430 13.7520 

0.7500 23.1080 23.4500 12.1940 13.4110 

1.0000 26.7890 27.6130 11.4110 13.2910 

1.2500 30.9900 32.7490 10.6740 13.4420 

1.5000 35.6390 39.1330 9.9509 13.9410 

1.7500 40.5170 47.1460 9.1961 14.9170 

2.0000 45.1020 57.3340 8.3326 16.5940 

2.2500 48.2750 70.4970 7.2317 19.3740 

2.5000 47.6250 87.8200 5.6722 24.0380 

2.7500 37.9440 111.0200 3.2795 32.1880 

3.0000 7.1398 142.1200 -0.5310 47.4880 

3.2500 -74.5650 181.4500 -6.4158 79.0010 

3.5000 -282.0000 218.4300 -14.0240 149.5100 

3.7500 -763.1400 208.3800 -19.4110 300.3400 

4.0000 -1502.9000 83.4790 -18.5530 492.8500 

4.2500 -1851.5000 -140.0800 -14.6200 458.6200 
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4.5000 -1692.3000 -361.8200 -8.6507 207.9200 

4.7500 -1732.8000 -545.5300 -2.8511 50.2590 

5.0000 -2102.7000 -722.6000 -0.4281 7.0045 

 

 
Figure (3.2.130): The solution of (57) at α=1 

 

While 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, we have the 

following model: 

𝑢′ = 𝑢 − 0.03𝑣𝑠  
𝑣′ = 𝑣 − 0.03𝑢𝑟 

𝑟′ = −0.4𝑟 + (0.0175 −
𝛼

200
)𝑣𝑠 

𝑠′ = −0.4𝑠 + (0.0025 +
𝛼

200
)𝑢𝑟  

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                  (58) 

 

We solve (54) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.131): 

  

 
Figure (3.2.131): The solution of (58) at α=0 
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At α-level = 0.5, the solution figure (3.2.132) in the appendix. At α-level = 1, the 

solution is figure (3.2.133): 

  

 
Figure (3.2.133): The solution of (58) at α=1 

 

If 𝑥(𝑡) is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then we have the 

following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −0.4𝑠 + (0.005 +
𝛼

200
)𝑢𝑟  

𝑠′ = −0.4𝑟 + (0.015 −
𝛼

200
)𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                    (59) 

At α-level = 0, the solution is figure (3.2.134): 

  

 
Figure (3.2.134): The solution of (59) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.135) in the appendix. At α-level = 1, the 

solution is figure (3.2.136): 
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Figure (3.2.136): The solution of (59) at α=1 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable, then we have the following model: 

𝑢′ = 𝑣 − 0.03𝑢𝑟 
𝑣′ = 𝑢 − 0.03𝑣𝑠  

𝑟′ = −0.4𝑟 + (0.0175 −
𝛼

200
)𝑣𝑠 

𝑠′ = −0.4𝑠 + (0.0025 +
𝛼

200
)𝑢𝑟  

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                   (60) 

 

We solve this model by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-

level = 0, the solution graphs are figure (3.2.137), figure (3.2.138) and figure 

(3.2.139): 

 

 

Figure (3.2.137): The solution of (60) at α=0 for short time period 
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Figures (3.2.138) and (3.2.139): The solution of (60) at α=0 as time increases 

 

At 𝛼 = 0, 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 43.72, 𝑣(𝑡) → 83.64, 𝑟(𝑡) → 63.76 ,  𝑠(𝑡) →

17.42.  So the solution is asymptotically stable but there is no fuzzy solution for 

𝑦(𝑡) since 𝑟(𝑡) > 𝑠(𝑡). 

At α-level = 0.5, the solution graphs are figure (3.2.140), figure (3.2.141) and 

figure (3.2.142) in the appendix. At α-level = 1, the solution graphs are figure 

(3.2.143), figure (3.2.144) and figure (3.2.145): 

 

 

Figure (3.2.143): The solution of (60) at α=1 for short time period 
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Figures (3.2.144) and (3.2.145): The solution of (60) at α=1 as time increases 

 

At 𝛼 =  1, the solution is asymptotically stable and there is no fuzzy solution for 

𝑌(𝑡) since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 37.94 , 𝑣(𝑡) → 45.98, 𝑟(𝑡) → 39.52 ,  𝑠(𝑡) →

28.11 . 

 

From previous work, at  α < 1 the solution is biologically acceptable only when 

𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable. This solution is asymptotically stable but 

𝑟(𝑡) > 𝑠(𝑡) for 𝑡 →  ∞, so there is no fuzzy solution for 𝑦(𝑡) whether for 

trapezoidal or triangular fuzzy number. At 𝛼 = 1 the solution is the same as the 

solution of the crisp case when 𝑑 a triangular fuzzy number but it isn’t when 𝑑 a 

trapezoidal fuzzy number. So the triangular fuzzy number is better than the 

trapezoidal fuzzy number. 

Therefore, if we fuzzify 𝑑 by a triangular fuzzy number with small support , for 

example 𝑑 =  (0.0095, 0.01, 0.0105) then the solution will be periodic and stable, 

but with large support, for example 𝑑 =  (0.0001, 0.01, 0.0199) the solution will 
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be asymptotically stable. As in figures (3.2.146) and (3.2.147) we plot the solution 

of 𝑥(𝑡) and 𝑦(𝑡) when they are (2)-differentiable at α = 0. 

 

Figure (3.2.146): The solution of X(t) and Y(t) when 𝑑 =  (0.0095, 0.01, 0.0105) 

 

 
Figure (3.2.147): The solution of X(t) and Y(t) when 𝑑 =  (0.0001, 0.01, 0.0199)  

 

In figure (3.2.146) the solution is stable. We try to solve this in Matlab for too long 

time period and then we note that 𝑟(𝑡) > 𝑠(𝑡) with little clear difference but this 

difference is very large when 𝑑 is a triangular fuzzy number with large support. 

In addition, we assume 𝑑 a triangular fuzzy number with support such that the 

distance between  its endpoints and the core unequal. Figure (3.2.148) and figure 

(3.2.149) show the solution of  𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) when they are (2)-differentiable at 

α − level = 0 for 𝑑 = (0.0005,0.01,0.015) 𝑎𝑛𝑑 𝑑 = (0.0095,0.01,0.05), 

respectively.  



106 
 

 

Figure (3.2.148): The solution of X(t) and Y(t) when 𝑑 = (0.0005,0.01,0.015)  

 

 
Figure (3.2.149): The solution of X(t) and Y(t) when 𝑑 = (0.0095,0.01,0.05)  

 

Also here we conclude that if the distance for at least one support endpoints is long 

from the core then the solution will be asymptotically stable. 

 

Now, we consider all rates as fuzzy numbers at the same time. As we notice in 

previous works that the triangular fuzzy number is better than the trapezoidal one. 

Therefore, we use a triangular fuzzy numbers as follow: 

We let  𝑎 = (0.5, 1, 1.5), b = (0.01 ,0.03 , 0.05), c = (0.3 ,0.4 , 0.5) and d =

 (0.005 ,0.01 , 0.015) with there 𝛼 − 𝑙𝑒𝑣𝑒𝑙𝑠  [𝑎]𝛼 = [0.5 +
𝛼

2
,  1.5 −  

𝛼

2
] , [𝑏]𝛼 =

[0.01 +
𝛼

50
,  0.05 −

𝛼

50
] , [𝑐]𝛼 = [0.3 +

𝛼

10
,  0.5 −

𝛼

10
]  𝑎𝑛𝑑 [𝑑]𝛼 = [0.005 +

𝛼

200
,  0.015 −

𝛼

200
].  Then we have the following model: 
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𝑥′(𝑡) = (0.5, 1, 1.5)𝑥 − (0.01 ,0.03 , 0.05)𝑥𝑦 
𝑦′(𝑡) = −(0.3 ,0.4 , 0.5) 𝑦 + (0.005 ,0.01 , 0.015)𝑥𝑦 

With fuzzy initial conditions: 
[𝑥0]𝛼 = [14 + 𝛼, 16 − 𝛼], [𝑦0]𝛼 = [14 + 𝛼, 16 − 𝛼]               (61)  

 

This model has two equilibrium points. The first one is (0,0,0,0) and the second 

one varies according to the α–level, as in the following table (3.2.26). 

 

Table (3.2.26): The equilibrium points of (61) 
𝛼 − 𝑙𝑒𝑣𝑒𝑙 𝑢 𝑣 𝑟 𝑠 

0.25 65.4394 27.4508 38.4527 33.1095 

0.5 53.924 31.155 36.1098 32.4531 

1 40 40 33.3333 33.3333 

 

If 𝑥(𝑡) and 𝑦(𝑡) are (1)-differentiable, then model (61) will be as follow: 

𝑢′ = (0.5 +
𝛼

2
)𝑢 − (0.05 −

𝛼

50
)𝑣𝑠 

𝑣′ = (1.5 +
𝛼

2
)𝑣 − (0.01 −

𝛼

50
)𝑢𝑟 

𝑟′ = −(0.5 −
𝛼

10
)𝑠 + (0.005 +

𝛼

200
)𝑢𝑟 

𝑠′ = −(0.3 −
𝛼

10
)𝑟 + (0.015 +

𝛼

200
)𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                  (62) 

we solve (62) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is table (3.2.27), where its graph is figure (3.2.150): 

  

Table (3.2.27): The solution of (62) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.2500 11.7840 22.7560 12.2090 16.1700 

0.5000 7.3379 32.7660 10.2820 17.0270 

0.7500 -1.1495 47.5630 8.0874 19.0140 

1.0000 -17.2540 69.3570 5.4225 23.0240 

1.2500 -49.5600 101.2400 1.9561 31.2520 

1.5000 -120.4700 147.1900 -2.8655 49.5480 

1.7500 -301.3700 210.4400 -9.8869 96.9350 

2.0000 -862.8100 282.9300 -19.3970 246.7100 

2.2500 -2791.5000 296.0300 -26.5810 765.5200 
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2.5000 -6364.5000 61.4670 -26.4250 1665.3000 

2.7500 -4663.7000 -369.1300 -21.4820 930.4100 

3.0000 -2369.5000 -707.0100 -9.3617 121.4500 

3.2500 -2258.2000 -1061.6000 -1.4016 4.5910 

3.5000 -2542.1000 -1548.5000 -0.0854 0.0389 

3.7500 -2880.4000 -2253.2000 -0.0030 0.0001 

4.0000 -3263.9000 -3278.4000 -0.0001 0.0000 

4.2500 -3698.5000 -4770.1000 0.0000 0.0000 

4.5000 -4190.9000 -6940.4000 0.0000 0.0000 

4.7500 -4748.9000 -10098.0000 0.0000 0.0000 

5.0000 -5381.2000 -14693.0000 0.0000 0.0000 

 

 
Figure (3.2.150): The solution of (62) at α=0 

 

At α-level = 0.5, the solution is figure (2.151) in the appendix. At α-level = 1, the 

solution is figure (3.2.152): 

  

 
Figure (3.2.152): The solution of (62) at α=1 

 

If 𝑥(𝑡) is (1)-differentiable and 𝑦(𝑡) is (2)-differentiable, then model (61) will be 

as follow: 
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𝑢′ = (0.5 +
𝛼

2
)𝑢 − (0.05 −

𝛼

50
)𝑣𝑠 

𝑣′ = (1.5 +
𝛼

2
)𝑣 − (0.01 −

𝛼

50
)𝑢𝑟 

𝑟′ = −(0.3 −
𝛼

10
)𝑟 + (0.015 +

𝛼

200
)𝑣𝑠 

𝑠′ = −(0.5 −
𝛼

10
)𝑠 + (0.005 +

𝛼

200
)𝑢𝑟 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                   (63) 

we solve (63) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is table (3.2.28) and figure (3.2.153): 

  

Table (3.2.28): The solution of (63) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 14.0000 16.0000 14.0000 16.0000 

0.1750 12.7360 20.4270 13.9970 14.8170 

0.3500 10.8850 26.2240 14.1260 13.7150 

0.5250 8.2900 33.8190 14.4100 12.6810 

0.7000 4.7627 43.7750 14.8740 11.6990 

0.8750 0.0821 56.8360 15.5470 10.7500 

1.0500 -6.0033 73.9840 16.4590 9.8108 

1.2250 -13.7590 96.5190 17.6360 8.8485 

1.4000 -23.4270 126.1600 19.0900 7.8218 

1.5750 -35.1420 165.1800 20.7940 6.6775 

1.7500 -48.7650 216.5700 22.6440 5.3533 

1.9250 -63.6060 284.2100 24.3870 3.7932 

2.1000 -78.0050 373.0700 25.5300 1.9833 

2.2750 -88.9570 489.3300 25.2700 0.0183 

2.4500 -92.1650 640.6500 22.5630 -1.8329 

2.6250 -83.2990 836.5200 16.5300 -3.1558 

2.8000 -60.5130 1089.5000 7.1398 -3.6410 

2.9750 -25.5010 1416.7000 -4.5870 -3.4140 

3.1500 19.9980 1842.0000 -17.7570 -3.1367 

3.3250 87.7570 2397.6000 -35.3990 -4.0670 

3.5000 262.6900 3134.5000 -80.9730 -11.3330 
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Figure (3.2.153): The solution of (63) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.154) in the appendix. At α-level = 1, the 

solution is figure (3.2.155): 

  

 
Figure (3.2.155): The solution of (63) at α=1 

 

If 𝑥(𝑡)is (2)-differentiable and 𝑦(𝑡) is (1)-differentiable, then (61) will be as 

follow: 

𝑢′ = (1.5 +
𝛼

2
)𝑣 − (0.01 −

𝛼

50
)𝑢𝑟 

𝑣′ = (0.5 +
𝛼

2
)𝑢 − (0.05 −

𝛼

50
)𝑣𝑠 

𝑟′ = −(0.5 −
𝛼

10
)𝑠 + (0.005 +

𝛼

200
)𝑢𝑟 

𝑠′ = −(0.3 −
𝛼

10
)𝑟 + (0.015 +

𝛼

200
)𝑣𝑠 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (64) 
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we solve (64) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution is figure (3.2.156): 

 
Figure (3.2.156): The solution of (64) at α=0 

 

At α-level = 0.5, the solution is figure (3.2.157) in the appendix. At α-level = 1, the 

solution is figure (3.2.158):  

 

 
Figure (3.2.158): The solution of (64) at α=1 

 

If 𝑥(𝑡)and 𝑦(𝑡) are (2)-differentiable, then model will be as follow: 

𝑢′ = (1.5 +
𝛼

2
)𝑣 − (0.01 −

𝛼

50
)𝑢𝑟 

𝑣′ = (0.5 +
𝛼

2
)𝑢 − (0.05 −

𝛼

50
)𝑣𝑠 

𝑟′ = −(0.3 −
𝛼

10
)𝑟 + (0.015 +

𝛼

200
)𝑣𝑠 

𝑠′ = −(0.5 −
𝛼

10
)𝑠 + (0.005 +

𝛼

200
)𝑢𝑟 
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With the initial conditions: 

𝑢0 = 14 + 𝛼, 𝑣0 = 16 − 𝛼, 𝑟0 = 14 + 𝛼, 𝑠0 = 16 − 𝛼                 (65) 

we solve (65) by Runge-Kutta method in Matlab at α-level=0, 0.5, 1. At α-level = 

0, the solution graphs are figure (3.2.159) and figure (3.2.160): 

 

 
Figure (3.2.159): The solution of (65) at α=0 for short time period  

 

 
Figure (3.2.160): The solution of (65) at α=0 as time increases 

 

At α-level = 0, 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 84.34 , 𝑣(𝑡) → 23.71, 𝑟(𝑡) → 42.17 ,  𝑠(𝑡) →

35.57.  So the solution is asymptotically stable but 𝑢(𝑡) > 𝑣(𝑡) and 𝑟(𝑡) > 𝑠(𝑡). 

Therefore, there are no fuzzy solutions for 𝑥(𝑡) and 𝑦(𝑡). 

At α-level = 0.5, the solution graphs are figure (3.2.161), figure (3.2.162) and 

figure (3.2.163) in the appendix. At α-level = 1, the solution is figure (3.2.164): 
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Figure (3.2.164): The solution of (65) at α=1 

 

Now, we try to fuzzify the model using triangular fuzzy numbers of small supports. 

For example, we let 𝑎 = (0.9999,1.1.0001), 𝑏 = (0.0299, 0.03 ,0.0301), 𝑐 =
(0.3999, 0.4 ,0.4001) and 𝑑 = (0.0099, 0.01 ,0.0101). Since forms (1,1), (1,2), 

(2,1)-differentiable give unacceptable solutions for our model, we find the 

graphical solution of the new model when 𝑥(𝑡) and 𝑦(𝑡) are (2)-differentiable at 

𝛼 = 0 as in figure (3.2.165) and compare it with the last model. 

 

 

Figure (3.2.165): The solution at α=0 with small supports 

 

Here, we make all rates triangular fuzzy numbers, when 𝑥(𝑡) and 𝑦(𝑡) are (1,1), 

(1,2) or (2,1)-differentiable, we obtain unacceptable solutions, but at 𝛼 = 1 the 

solution is the same as the solution of the crisp case. While, when 𝑥(𝑡) and 𝑦(𝑡) 

are (2)-differentiable, the solutions are asymptotically stable but as 𝑡 →  ∞ we note 

that 𝑟(𝑡) > 𝑠(𝑡) and 𝑢(𝑡) > 𝑣(𝑡). So, there are no fuzzy solutions for 
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 𝑥(𝑡) and 𝑦(𝑡) but these solutions are acceptable biologically. At 𝛼 = 1 , the 

solution is the same as the crisp solution. Finally, we try to take a triangular fuzzy 

number with very small supports, then the solutions are periodic about the 

equilibrium points but 𝑟(𝑡) > 𝑠(𝑡) and 𝑢(𝑡) > 𝑣(𝑡) with clear differences. 

Therefore, there are no fuzzy solutions for 𝑥(𝑡) and 𝑦(𝑡). 

 

3.3: Summary 

We reviewed an example of the simplest model of predation. We convert the 

model to a fuzzy one by fuzzifying the initial conditions and then by fuzzifying the 

parameters. We showed the simulations and graphical solutions of models under 

generalized Hukuhara derivative through Matlab program using Runge-Kutta 

method. We compared these solutions with the crisp one. 
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Chapter 4 

Fuzzy Predator-Prey Model with a Functional 

Response of the Form Arctan(ax) 
 

4.1: Fuzzy Predator-Prey Model with a Functional Response of the 

Form Arctan(ax) and Fuzzy Initial Conditions 
 

In [4], the researchers dealt with the general predator prey model of the form 

𝑋′(𝑡) = 𝑟𝑋(1 − 𝑋) − 𝑌 𝑡𝑎𝑛−1(𝑎𝑋) 

𝑌′(𝑡) = −𝐷𝑌 + 𝑠𝑌 𝑡𝑎𝑛−1(𝑎𝑋)                                     (66) 

where 𝑋 𝑎𝑛𝑑 𝑌 are the prey and the predator population sizes respectively, such 

that r, s ,a and D are positive parameters. Let (𝑥∗, 𝑦∗) be the equilibrium point of 

(66), then 𝑥∗ =
1

𝑎
𝑡𝑎𝑛

𝐷

𝑠
  and 𝑦∗ =

𝑟𝑠𝑥∗(1−𝑥∗)

𝐷
 , moreover (0,0) and (1,0). Where 

𝐷, 𝑠 𝑎𝑛𝑑 𝑎 are chosen such that 0 <  𝑥∗ <  1. They established the necessary and 

sufficient condition for the nonexistence of limit cycles of (66). The system has no 

limit cycle if and only if  tan(
𝐷

𝑠
)[

𝑠 tan(
𝐷

𝑠
)−2𝐷[1+𝑡𝑎𝑛2(

𝐷

𝑠
)]

𝑠 tan(
𝐷

𝑠
)−𝐷[1+𝑡𝑎𝑛2(

𝐷

𝑠
)]

] ≥ 𝑎 [4]. 

 So , if tan(
𝐷

𝑠
) [

𝑠 tan(
𝐷

𝑠
)−2𝐷[1+𝑡𝑎𝑛2(

𝐷

𝑠
)]

𝑠 tan(
𝐷

𝑠
)−𝐷[1+𝑡𝑎𝑛2(

𝐷

𝑠
)]

] < 𝑎 then there is a limit cycle. Depending 

on the existence condition we created the following model: 

𝑋′(𝑡) = 2𝑋(1 − 𝑋) − 𝑌 𝑡𝑎𝑛−1(5𝑋) 

𝑌′(𝑡) = −0.4 𝑌 + 0.6 𝑌 𝑡𝑎𝑛−1(5𝑋) 

𝑥0 = 1 𝑎𝑛𝑑 𝑦0 = 1                                            (67) 

The equilibrium points of (67) are (0,0), (1,0) 𝑎𝑛𝑑 (0.157369 , 0.397811). By 

Matlab using Runge-Kutta method we find the solution of (67) as in table (4.1.1) 

and its graph is figure (4.1.1):  

Table (4.1.1): The solution of (67)  
Time 𝑋(𝑡) 𝑌(𝑡) 

0.0000 1.0000 1.0000 

5.0000 0.0004 0.2800 

10.0000 0.2536 0.0598 

15.0000 0.7375 0.3892 
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20.0000 0.0123 0.3867 

25.0000 0.5572 0.2186 

30.0000 0.0359 0.6595 

35.0000 0.1821 0.1628 

40.0000 0.3046 0.7312 

45.0000 0.0441 0.1979 

50.0000 0.6131 0.4784 

55.0000 0.0163 0.3125 

60.0000 0.6503 0.2871 

65.0000 0.0173 0.5135 

70.0000 0.3583 0.1827 

75.0000 0.1017 0.7595 

80.0000 0.0953 0.1683 

85.0000 0.4766 0.6195 

90.0000 0.0258 0.2402 

95.0000 0.6657 0.3817 

100.0000 0.0140 0.3900 

 

 
Figure (4.1.1): The solution of (67)  

 

We can note that the curves of the solution of (67) are oscillated about the 

equilibrium point (0.157369 , 0.397811). So, it is stable but the other points 

(0,0) and (1,0) are unstable. 

 Now, we want to explore a fuzzy model from model (67). Therefore, we assume 

that 𝑋(𝑡) 𝑎𝑛𝑑 𝑌(𝑡) are fuzzy numbers with fuzzy initial conditions. Let [𝑋]𝛼 =
[𝑢, 𝑣] 𝑎𝑛𝑑 [𝑌]𝛼 = [𝑟, 𝑠]. And let 𝑥0 = 𝑦0 = (0.5 , 1 , 1.5) a triangular fuzzy 

numbers then [𝑥0]𝛼 = [𝑦0]𝛼 = [0.5 +
𝛼

2
,  1.5 −

𝛼

2
].  

As we did before using the generalized Hukuhara derivatives for X(t) and Y(t), we 

let 𝑋(𝑡) 𝑎𝑛𝑑 𝑌(𝑡) are (1)-differentiable then [𝑥′]𝛼 = [𝑢′, 𝑣′] and [𝑦′]𝛼 = [𝑟′, 𝑠′]. 

Then the model will be as follows: 
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𝑢′ = 2𝑢 − 2𝑣2 − 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑣′ = 2𝑣 − 2𝑢2 − 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑟′ = −0.4 𝑠 + 0.6 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑠′ = −0.4 𝑟 + 0.6 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                        (68) 

The equilibrium points of (68) are 𝜒(0,0), 𝜒(1,0) 𝑎𝑛𝑑 𝜒(0.157369 ,0.397811).We solve 

(68) by Runge-Kutta method in Matlab at 𝛼 − 𝑙𝑒𝑣𝑒𝑙𝑠 = 0, 0.5, 1. At α-level = 0, 

the solution is figure (4.1.2): 

 
Figure (4.1.2): The solution of (68) at α=0 

 

At α-level = 0.5, the solution is figure (4.1.3) in the appendix. At α-level = 1, the 

solution is table (4.1.2) and figure (4.1.4): 

  

Table (4.1.2): The solution of (68) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 1.0000 1.0000 1.0000 1.0000 

5.0000 0.0004 0.0004 0.2800 0.2800 

10.0000 0.2536 0.2536 0.0598 0.0598 

15.0000 0.7375 0.7375 0.3892 0.3892 

20.0000 0.0123 0.0123 0.3867 0.3867 

25.0000 0.5572 0.5572 0.2186 0.2186 

30.0000 0.0359 0.0359 0.6595 0.6595 

35.0000 0.1821 0.1821 0.1628 0.1628 

40.0000 0.3046 0.3046 0.7312 0.7312 

45.0000 0.0441 0.0441 0.1979 0.1979 

50.0000 0.6131 0.6131 0.4784 0.4784 

55.0000 0.0163 0.0163 0.3125 0.3125 
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60.0000 0.6503 0.6503 0.2871 0.2871 

65.0000 0.0173 0.0173 0.5135 0.5135 

70.0000 0.3583 0.3583 0.1827 0.1827 

75.0000 0.1017 0.1017 0.7595 0.7595 

80.0000 0.0953 0.0953 0.1683 0.1683 

85.0000 0.4766 0.4766 0.6195 0.6195 

90.0000 0.0258 0.0258 0.2402 0.2402 

95.0000 0.6657 0.6657 0.3817 0.3817 

100.0000 0.0140 0.0140 0.3900 0.3900 

 

 
Figure (4.1.4): The solution of (68) at α=1 

 

While if 𝑋(𝑡) is (1)-differentiable and 𝑌(𝑡) is (2)-differentiable, then we have the 

following model: 

𝑢′ = 2𝑢 − 2𝑣2 − 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑣′ = 2𝑣 − 2𝑢2 − 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑟′ = −0.4 𝑟 + 0.6 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑠′ = −0.4 𝑠 + 0.6 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                        (69) 

We solve (69) by Runge-Kutta method in Matlab at 𝛼 − 𝑙𝑒𝑣𝑒𝑙𝑠 = 0, 0.5, 1. At α-

level = 0, the solution is figure (4.1.5): 
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Figure (4.1.5): The solution of (69) at α=0 

 

At α-level = 0.5, the solution is figure (4.1.6) in the appendix. At α-level = 1, the 

solution is figure (4.1.7): 

  

 
Figure (4.1.7): The solution of (69) at α=1 

 

If 𝑋(𝑡) is (2)-differentiable and 𝑌(𝑡) is (1)-differentiable, then we have the 

following model: 

𝑢′ = 2𝑣 − 2𝑢2 − 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑣′ = 2𝑢 − 2𝑣2 − 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑟′ = −0.4 𝑠 + 0.6 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑠′ = −0.4 𝑟 + 0.6 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                         (70) 
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We solve (70) by Runge-Kutta method in Matlab at 𝛼 − 𝑙𝑒𝑣𝑒𝑙𝑠 = 0, 0.5, 1. At α-

level = 0, the solution is figure (4.1.8): 

  

 
Figure (4.1.8): The solution of (70) at α=0 

 

At α-level = 0.5, the solution is figure (4.1.9) in the appendix. At α-level = 1, the 

solution is figure (4.1.10):  

 

 
Figure (4.1.10): The solution of (70) at α=1 

 

Now, if 𝑋(𝑡) and 𝑌(𝑡) are (2)-differentiable, then we have the following model: 

𝑢′ = 2𝑣 − 2𝑢2 − 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑣′ = 2𝑢 − 2𝑣2 − 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑟′ = −0.4 𝑟 + 0.6 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑠′ = −0.4 𝑠 + 0.6 𝑟 𝑡𝑎𝑛−1(5 𝑢) 
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𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                        (71) 

We solve (71) by Runge-Kutta method in Matlab at 𝛼 − 𝑙𝑒𝑣𝑒𝑙𝑠 = 0, 0.5, 1. At α-

level = 0, the solution graphs are figure (4.1.11) and figure (4.1.12): 

 

 
Figure (4.1.11): The solution of (71) at α=0 for short time period  

 

 
Figure (4.1.12): The solution of (71) at α=0 as time increases 

 

At α-level = 0.5, the solution graphs are figure (4.1.13) and figure (4.1.14) in the 

appendix. At α-level = 1, the solution is figure (4.1.15): 
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Figure (4.1.15): The solution of (71) at α=1  

 

In this section, we create a new model. First, we find the crisp solution which 

periodic as 𝑡 → ∞ and stable about the equilibrium point (0.157369 , 0.397811), 

but  the equilibrium points (0,0) and (1,0) are unstable. Second, we make the 

initial conditions triangular fuzzy numbers then we obtain biologically 

unacceptable and unstable solution when 𝑋(𝑡) and 𝑌(𝑡) are (1,1), (1,2) and (2,1)-

differentiable for 𝛼 < 1. At 𝛼 = 1 the solution is equivalent to the crisp case. 

While, when 𝑋(𝑡) and 𝑌(𝑡) are (2)-differentiable, we note that 𝑢(𝑡) > 𝑣(𝑡) for 

very short time period but as 𝑡 → ∞ the solution becomes periodic and stable.  

Now, we try to use a triangular fuzzy numbers with small supports for the initial 

conditions. Let 𝑥0 = 𝑦0 = (0.9999 , 1 , 1.0001) then [𝑥0]𝛼 = [𝑦0]𝛼=[0.9999 +
𝛼

10000
,  1.0001 −

𝛼

10000
]. Since the model when 𝑋(𝑡) and 𝑌(𝑡) are (2)-differentiable 

give a fuzzy solution which is biologically acceptable we find the solution of  

𝑋(𝑡) 𝑎𝑛𝑑 𝑌(𝑡) when they are (2)-differentiable at 𝛼 − 𝑙𝑒𝑣𝑒𝑙 = 0. Therefore, we 

have the following model: 

𝑢′ = 2𝑣 − 2𝑢2 − 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑣′ = 2𝑢 − 2𝑣2 − 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑟′ = −0.4 𝑟 + 0.6 𝑠 𝑡𝑎𝑛−1(5 𝑣) 

𝑠′ = −0.4 𝑠 + 0.6 𝑟 𝑡𝑎𝑛−1(5 𝑢) 

𝑢0 = 𝑟0 = 0.9999 +
𝛼

10000
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.0001 −

𝛼

10000
          (72) 

The solution graphs are figures (4.1.16) and (4.1.17): 
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Figure (4.1.16): The solution of (72) at α=0 for short time period  

 

 
Figure (4.1.17): The solution of (72) at α=0 as time increases 

 

We can note that initially 𝑣(𝑡) > 𝑢(𝑡) and 𝑠(𝑡) > 𝑟(𝑡) but as 𝑡 → ∞ the solution 

become periodic and stable with 𝑣(𝑡) = 𝑢(𝑡) and 𝑠(𝑡) = 𝑟(𝑡). So, the solution of 

(72) is better than the previous one using initial conditions with large supports. 

 

4.2: Fuzzy Predator-Prey Model with a Functional Response of the 

Form Arctan(ax) and Fuzzy Parameters 
 

For first time we want to make the parameters of the model (67) triangular fuzzy 

numbers. For example, we let 𝑟 = (1,2,3) with [𝑟]𝛼 = [1 + 𝛼, 3 − 𝛼], 𝑎 =

(4,5,6) with [𝑎]𝛼 = [4 + 𝛼, 6 − 𝛼], 𝐷 = (0.2,0.4,0.6) with [𝐷]𝛼 = [0.2+
𝛼

5
, 0.6 −

𝛼

5
] and 𝑠 = (0.4,0.6,0.8) with [𝑠]𝛼 = [0.4 +

𝛼

5
, 0.8 −

𝛼

5
]. Then (67) will be as 

follow: 
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 𝑋′(𝑡) = (1,2,3)𝑋(1 − 𝑋) − 𝑌 𝑡𝑎𝑛
−1((4,5,6)𝑋) 

𝑌′(𝑡) = −(0.2,0.4,0.6) 𝑌 + (0.4,0.6,0.8) 𝑌 𝑡𝑎𝑛−1(5𝑋) 

𝑥0 = (0.5 , 1 , 1.5) and 𝑦0 = (0.5 , 1 , 1.5)                          (73) 

 

If 𝑋(𝑡) and 𝑌(𝑡) are (1)-differentiable, then we have the following model: 

𝑢′ = (1 + 𝛼)𝑢 − (3 − 𝛼)𝑣2 − 𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 

𝑣′ = (3 − 𝛼)𝑣 − (1 + 𝛼)𝑢2 − 𝑟 𝑡𝑎𝑛−1((4 + 𝛼) 𝑢) 

𝑟′ = −(0.6 −
𝛼

5
)𝑠 + (0.4 +

𝛼

5
)𝑟 𝑡𝑎𝑛−1((4 + 𝛼)𝑢) 

𝑠′ = −(0.2 +
𝛼

5
)𝑟 + (0.8 −

𝛼

5
)𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 

𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  and  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                         (74) 

 

The equilibrium points of (74) are 𝜒(0,0), 𝜒(1,0).We solve this model numerically by 

Matlab at α=0,0.5,1. At α-level = 0, the solution is figure (4.2.1):  

 

 
Figure (4.2.1): The solution of (74) at α=0 

 

At α-level = 0.5, the solution is figure (4.2.2) in the appendix. At α-level = 1, the 

solution is table (4.2.1), where its graph is figure (4.2.3):  
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Table (4.2.1): The solution of (74) at α=1 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 1.0000 1.0000 1.0000 1.0000 

5.0000 0.0004 0.0004 0.2800 0.2800 

10.0000 0.2536 0.2536 0.0598 0.0598 

15.0000 0.7375 0.7375 0.3892 0.3892 

20.0000 0.0123 0.0123 0.3867 0.3867 

25.0000 0.5572 0.5572 0.2186 0.2186 

30.0000 0.0359 0.0359 0.6595 0.6595 

35.0000 0.1821 0.1821 0.1628 0.1628 

40.0000 0.3046 0.3046 0.7312 0.7312 

45.0000 0.0441 0.0441 0.1979 0.1979 

50.0000 0.6131 0.6131 0.4784 0.4784 

55.0000 0.0163 0.0163 0.3125 0.3125 

60.0000 0.6503 0.6503 0.2871 0.2871 

65.0000 0.0173 0.0173 0.5135 0.5135 

70.0000 0.3583 0.3583 0.1827 0.1827 

75.0000 0.1017 0.1017 0.7595 0.7595 

80.0000 0.0953 0.0953 0.1683 0.1683 

85.0000 0.4766 0.4766 0.6195 0.6195 

90.0000 0.0258 0.0258 0.2402 0.2402 

95.0000 0.6657 0.6657 0.3817 0.3817 

100.0000 0.0140 0.0140 0.3900 0.3900 

 

 
Figure (4.2.3): The solution of (74) at α=1 

 

If 𝑋(𝑡) is (1)-differentiable and 𝑌(𝑡) is (2)-differentiable, then we have the 

following model: 

𝑢′ = (1 + 𝛼)𝑢 − (3 − 𝛼)𝑣2 − 𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 

𝑣′ = (3 − 𝛼)𝑣 − (1 + 𝛼)𝑢2 − 𝑟 𝑡𝑎𝑛−1((4 + 𝛼) 𝑢) 

𝑟′ = −(0.2 +
𝛼

5
)𝑟 + (0.8 −

𝛼

5
)𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 
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𝑠′ = −(0.6 −
𝛼

5
)𝑠 + (0.4 +

𝛼

5
)𝑟 𝑡𝑎𝑛−1((4 + 𝛼)𝑢) 

𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                        (75) 

We solve (75) by Matlab at 𝛼 = 0,0.5,1. At α-level = 0, the solution is figure 

(4.2.4): 

 

 
Figure (4.2.4): The solution of (75) at α=0 

 

At α-level = 0.5, the solution is figure (4.2.5) in the appendix. At α-level = 1, the 

solution is figure (4.2.6): 

  

 
Figure (4.2.6): The solution of (75) at α=1 

 

If 𝑋(𝑡) is (2)-differentiable and 𝑌(𝑡) is (1)-differentiable, then we have the 

following model: 
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𝑢′ = (3 − 𝛼)𝑣 − (1 + 𝛼)𝑢2 − 𝑟 𝑡𝑎𝑛−1((4 + 𝛼) 𝑢) 

𝑣′ = (1 + 𝛼)𝑢 − (3 − 𝛼)𝑣2 − 𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 

𝑟′ = −(0.6 −
𝛼

5
)𝑠 + (0.4 +

𝛼

5
)𝑟 𝑡𝑎𝑛−1((4 + 𝛼)𝑢) 

𝑠′ = −(0.2 +
𝛼

5
)𝑟 + (0.8 −

𝛼

5
)𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 

𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                         (76) 

We solve (76) using Matlab at 𝛼 = 0,0.5,1. At α-level = 0, the solution is table 

(4.2.2), where its graph is figure (4.2.7):  

Table (4.2.2): The solution of (76) at α=0 
Time 𝑢(𝑡) 𝑣(𝑡) 𝑟(𝑡) 𝑠(𝑡) 

0.0000 0.5000 1.5000 0.5000 1.5000 

0.5000 0.8420 0.1187 -0.0132 2.3504 

1.0000 0.8739 0.0532 -0.8914 2.7674 

1.5000 1.3734 0.0693 -2.2041 3.3358 

2.0000 2.1710 0.0888 -4.2409 4.3304 

2.5000 3.0778 0.0942 -7.4537 5.9350 

3.0000 4.1125 0.0893 -12.5130 8.3406 

3.5000 5.3515 0.0809 -20.4190 11.8410 

4.0000 6.8573 0.0717 -32.6690 16.8830 

4.5000 8.6924 0.0628 -51.5010 24.1250 

5.0000 10.9300 0.0546 -80.2540 34.5240 

5.5000 13.6560 0.0472 -123.9100 49.4840 

6.0000 16.9780 0.0406 -189.8600 71.0550 

6.5000 21.0220 0.0348 -289.1400 102.2500 

7.0000 25.9450 0.0296 -438.0700 147.4700 

7.5000 31.9350 0.0251 -660.9100 213.2100 

8.0000 39.2230 0.0213 -993.6100 309.0200 

8.5000 48.0880 0.0179 -1489.5000 448.9400 

9.0000 58.8690 0.0151 -2227.4000 653.6700 

9.5000 71.9810 0.0126 -3324.2000 953.7300 

10.0000 87.9260 0.0105 -4953.0000 1394.1000 
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Figure (4.2.7): The solution of (76) at α=0 

 

At α-level = 0.5, the solution is figure (4.2.8) in the appendix. At α-level = 1, the 

solution is figure (4.2.9):  

 

 
Figure (4.2.9): The solution of (76) at α=1 

 

If 𝑋(𝑡) and 𝑌(𝑡) are (2)-differentiable, then we have the following model: 

𝑢′ = (3 − 𝛼)𝑣 − (1 + 𝛼)𝑢2 − 𝑟 𝑡𝑎𝑛−1((4 + 𝛼) 𝑢) 

𝑣′ = (1 + 𝛼)𝑢 − (3 − 𝛼)𝑣2 − 𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 

𝑟′ = −(0.2 +
𝛼

5
)𝑟 + (0.8 −

𝛼

5
)𝑠 𝑡𝑎𝑛−1((6 − 𝛼)𝑣) 

𝑠′ = −(0.6 −
𝛼

5
)𝑠 + (0.4 +

𝛼

5
)𝑟 𝑡𝑎𝑛−1((4 + 𝛼)𝑢) 

𝑢0 = 𝑟0 = 0.5 +
𝛼

2
  and  𝑣0 = 𝑠0 = 1.5 −

𝛼

2
                        (77) 
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We solve model (77) by Matlab at 𝛼 = 0,0.5,1. At α-level = 0, the solution graphs 

are figure (4.2.10), figure (4.2.11) and figure (4.2.12): 

 

 
Figure (4.2.10): The solution of (77) at α=0 for short time period  

 

 
 

 
Figures (4.2.11) and (4.2.12): The solution of (77) at α=0 as time increases  
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At α-level = 0 , the solution is unstable since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 0.1744 , 𝑣(𝑡) →

0.1179, 𝑟(𝑡) → 0.5308 and 𝑠(𝑡) → 0.2155. 

At α-level = 0.5, the solution graphs are figure (4.2.13) and figure (4.2.14) in the 

appendix. At α-level = 1, the solution is figure (4.2.15):  

 

 
Figure (4.2.15): The solution of (77) at α=1 

 

Now, we want to fuzzify the parameters of the model (67) using triangular fuzzy 

numbers with small support. As follow: 

 let 𝑟 = (1.9995,2,2.0005) with  [𝑟]𝛼 = [1.9995 +
𝛼

2000
, 2.0005 −

𝛼

2000
], 

𝑎 = (4.9995,5,5.0005) with [𝑎]𝛼 = [4.9995 +
𝛼

2000
, 5.0005 −

𝛼

2000
], 

𝐷 = (0.3995,0.4,0.4005) with [𝐷]𝛼 = [0.3995 +
𝛼

2000
, 0.4005 −

𝛼

20000
],  

𝑠 = (0.5995,0.6,0.6005) with  [𝑠]𝛼 = [0.5995 +
𝛼

2000
, 0.6005 −

𝛼

2000
], 

𝑥0 = (0.9995,1,1.0005) with [𝑥0]𝛼 = [0.9995 +
𝛼

2000
, 1.0005 −

𝛼

2000
], 

𝑦0 = (0.9995,1,1.0005) with [𝑦0]𝛼 = [0.9995 +
𝛼

2000
, 1.0005 −

𝛼

2000
] , 

Then we have the following model: 

𝑋′(𝑡) = (1.9995,2,2.0005)𝑋(1 − 𝑋) − 𝑌 𝑡𝑎𝑛−1((4.9995,5,5.0005)𝑋) 

𝑌′(𝑡) = −(0.3995,0.4,0.4005) 𝑌 + (0.5995,0.6,0.6005) 𝑌 𝑡𝑎𝑛−1(5𝑋) 

𝑥0 = (0.9995 , 1 , 1.0005) 𝑎𝑛𝑑 𝑦0 = (0.9995 , 1 , 1.0005)              (78) 
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We solves model (78) when 𝑋(𝑡) and 𝑌(𝑡) are (2)-differentiable, then it becomes 

as follow: 

𝑢′ = (2.0005 −
𝛼

2000
)𝑣 − (1.9995 +

𝛼

2000
)𝑢2 − 𝑟 𝑡𝑎𝑛−1 ((4.9995 +

𝛼

2000
) 𝑢) 

𝑣′ = (1.9995 +
𝛼

2000
)𝑢 − (2.0005 −

𝛼

2000
)𝑣2 − 𝑠 𝑡𝑎𝑛−1((5.0005 −

𝛼

2000
)𝑣) 

𝑟′ = −(0.3995 +
𝛼

2000
)𝑟 + (0.6005 −

𝛼

2000
)𝑠 𝑡𝑎𝑛−1((5.0005 −

𝛼

2000
)𝑣) 

𝑠′ = −(0.4005 −
𝛼

2000
)𝑠 + (0.5995 +

𝛼

2000
)𝑟 𝑡𝑎𝑛−1((4.9995 +

𝛼

2000
)𝑢) 

𝑢0 = 𝑟0 = 0.9995 +
𝛼

2000
  𝑎𝑛𝑑  𝑣0 = 𝑠0 = 1.0005 −

𝛼

2000
              (79) 

We solve (79) by Runge-Kutta method in Matlab at α-levels= 0. The solution 

graphs are figure (4.2.16) and figure (4.2.17): 
 

 
Figure (4.2.16): The solution of (79) at α=0 for short time period  

 

 
Figure (4.2.17): The solution of (79) at α=0 as time increases 
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When we make the parameters of (67) triangular fuzzy numbers and for 𝛼 < 1 we 

obtain unacceptable solution when 𝑋(𝑡) and 𝑌(𝑡) are (1,1), (1,2) and (2,1)-

differentiable. While, when 𝑋(𝑡) and 𝑌(𝑡) are (2)-differentiable, the solution is 

unstable at 𝛼 = 0  but it becomes periodic as 𝛼 increases for 𝛼 < 1 with 𝑢(𝑡) >
𝑣(𝑡) 𝑎𝑛𝑑 𝑟(𝑡) > 𝑠(𝑡). So, there are no fuzzy solution for 𝑋(𝑡) and 𝑌(𝑡). However, 

at 𝛼 = 1 the solution is equivalent to the crisp case for all derivatives forms of 

𝑋(𝑡) and 𝑌(𝑡). Then we use triangular fuzzy numbers of small supports to fuzzify 

the parameters and the initial conditions. Thereafter, we find the solution when 

𝑋(𝑡) and 𝑌(𝑡) are (2)-differentiable at 𝛼 = 0, then we obtain periodic and stable 

solution. Therefore, as 𝑡 →  ∞, 𝑟(𝑡) > 𝑠(𝑡) so there is no fuzzy solution for 𝑌(𝑡).  

 

 

4.3: summery 

 
In this chapter, we created a new numerical model of predator-prey model with a 

functional response of the form 𝑎𝑟𝑐𝑡𝑎𝑛(𝑎𝑥) and presented the solutions 

numerically and graphically. Then we converted the initial conditions to fuzzy 

numbers using triangular fuzzy numbers and triangular fuzzy numbers of small 

support. Thereafter, we explored a new fuzzy model with functional response 

𝑎𝑟𝑐𝑡𝑎𝑛(x) with fuzzy parameters and initial conditions compared this model with 

another one of triangular fuzzy numbers with small supports. 
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Chapter 5  

Conclusions and Comments 

 
We covered the topic of predator prey model and solved it numerically using 

Runge-Kutta method and got periodic solutions and stable equilibrium points. As 

vagueness appears in problems which are analyzed, it is natural to use fuzzy 

differential equations. Therefore, using fuzzy sets is more realistic than the 

classical one. From the simulations and graphs of the solutions, we noted that the 

fuzzy solution is not always better than the crisp solution because the cases of 

derivatives of the forms (1,1), (1,2), (2,1) gave solutions that are incompatible with 

biological facts, while solutions obtained with (2,2) derivatives are biologically 

meaningful. In section 3.1 we had different initial populations of prey and predator 

using different cases of fuzzy numbers. We got different results at each time with 

derivatives of the form (2,2) but the solution with triangular and triangular shaped 

fuzzy numbers was better than the trapezoidal fuzzy numbers and as the initial 

populations of the prey and predator were closer to each other, the solution was 

better, that is the lower and upper bounds were equal and positive. 

When we fuzzify the parameters of predator-prey model, in some cases we didn’t 

get fuzzy solution, but these solutions were biologically acceptable only with 

derivatives form (2,2). However, the triangular and triangular shaped fuzzy 

numbers produced better solutions than the trapezoidal fuzzy numbers. 

Furthermore, as the endpoints of fuzzy numbers were closer to the core, the 

solution was closer to the crisp case and the equilibrium points were stable. 

For the predator prey model with functional response 𝑎𝑟𝑐𝑡𝑎𝑛(𝑎𝑥), we considered 

a numerical model that satisfies the existence condition then the solution was 

periodic as 𝑡 → ∞ and the equilibrium points were stable. When we converted the 

initial conditions to triangular fuzzy numbers we obtained the same results; that is, 

derivatives of the form (1,1), (1,2), (2,1) gave biologically unacceptable solutions 

but derivatives of the form (2,2) gave periodic solution and it was better with 

smaller supports of triangular fuzzy numbers. While, when we explored fuzzy 

model with fuzzy parameters, we didn’t obtain a good solution and it wasn’t 

acceptable with fuzzy logic. 
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Appendix  
 

 
Figure (3.1.20): The solution of (11) at α=0.5 

 

 
Figure (3.1.23): The solution of (12) at α=0.5 

 

 
Figure (3.1.26): The solution of (13) at α=0.5 



138 
 

 
Figure (3.1.30): The solution of (14) at α=0.5 for short time period 

 

 
Figure (3.1.31): The solution of (14) at α=0.5 as time increases 

 

 

 
Figure (3.1.34): The solution of (15) at α=0.5 
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Figure (3.1.37): The solution of (16) at α=0.5 

 

 
Figure (3.1.40): The solution of (17) at α=0.5 

 

 

 
Figure (3.1.44): The solution of (18) at α=0.5 for short time period  
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Figure (3.1.45): The solution of (18) at α=0.5 as time increases 

 

  

 
Figure (3.1.48): The solution of (19) at α=0.5 

 

 
Figure (3.1.51): The solution of (20) at α=0.5 
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Figure (3.1.54): The solution of (21) at α=0.5 

 

 

 
Figure (3.1.58): The solution of (22) at α=0.5 for short time period  

 

 
Figure (3.1.59): The solution of (22) at α=0.5 as time increases 
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Figure (3.2.2): The solution of (23) at α=0.5 

 

 

 
Figure (3.2.5): The solution of (24) at α=0.5 

 

 

 
Figure (3.2.8): The solution of (25) at α=0.5 
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Figure (3.2.13): The solution of (26) at α=0.5 for short time period  

 

 

 
Figures (3.2.14) and (3.2.15): The solution of (26) at α=0.5 as time increases 

 

At α-level = 0.5, 𝑎𝑠 𝑡 → ∞ ,  𝑢 → 47.42 , 𝑣 → 33.74 , 𝑟 → 29.64  ,  𝑠 → 35.14 . 
Therefore, the solution of 𝑦(𝑡) is asymptotically stable but there is no fuzzy 

solution for 𝑥(𝑡).  
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Figure (3.2.18): The solution of (27) at α=0.5 

 

 

 
Figure (3.2.21): The solution of (28) at α=0.5 

 

  

 
Figure (3.2.24): The solution of (29) at α=0.5 
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Figure (3.2.29): The solution of (30) at α=0.5 for short time period  

 

 
 

 
Figures (3.2.30) and (3.2.31): The solution of (30) at α=0.5 as time increases 

 

At α-level = 0.5, 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 65.21 , 𝑣(𝑡) → 24.53, 𝑟(𝑡) → 20.38  ,  𝑠(𝑡) →

33.22. So the solution is asymptotically stable. 
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Figure (3.2.38): The solution of (35) at α=0.5 

 

 

 
Figure (3.2.41): The solution of (36) at α=0.5 

 

 

 
Figure (3.2.44): The solution of (37) at α=0.5 
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Figure (3.2.48): The solution of (38) at α=0.5 for short time period  

 

 
 

 
Figures (3.2.49) and (3.2.50): The solution of (38) at α=0.5 as time increases 

 

At α-level = 0.5, the solution is asymptotically stable for 𝑌(𝑡) since 𝑎𝑠 𝑡 →
∞ ,  𝑢(𝑡) → 50.40 , 𝑣(𝑡) → 31.75 , 𝑟(𝑡) → 31.50 ,  𝑠(𝑡) → 39.68 . As we see there 

is no fuzzy solution for 𝑋(𝑡).  
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Figure (3.2.53): The solution of (39) at α=0.5 

 

 

 
Figure (3.2.56): The solution of (40) at α=0.5 

 

  

 
Figure (3.2.59): The solution of (41) at α=0.5 
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Figure (3.2.63): The solution of (42) at α=0.5 for short time period 

 

 

  
Figures (3.2.64) and (3.2.65): The solution of (42) at α=0.5 as time increases 

 

𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 50.40 , 𝑣(𝑡) → 31.76 , 𝑟(𝑡) → 31.50 𝑎𝑛𝑑 𝑠(𝑡) → 39.69. So the 

solution is asymptotically stable but there is no fuzzy solution for 𝑋(𝑡). 
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Figure (3.2.75): The solution of (45) at α=0.5 

 

 

 
Figure (3.2.78): The solution of (46) at α=0.5 

 

 

 
Figure (3.2.81): The solution of (47) at α=0.5 
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Figure (3.2.86): The solution of (48) at α=0.5 for short time period  

 

 

 
Figures (3.2.87) and (3.2.88): The solution of (48) at α=0.5 as time increases 

 

At α-level = 0.5, the solution is asymptotically stable since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) →
38.06 , 𝑣(𝑡) → 41.38 , 𝑟(𝑡) → 36.25 ,  𝑠(𝑡) → 30.66. However, there is no fuzzy 

solution for 𝑌(𝑡). 
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Figure (3.2.91): The solution of (49) at α=0.5 

 

 

 
Figure (3.2.94): The solution of (50) at α=0.5 

 

 

 
Figure (3.2.97): The solution of (51) at α=0.5 
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Figure (3.2.102): The solution of (52) at α=0.5 for short time period 

 

 

  
Figures (3.2.103) and (3.2.104): The solution of (52) at α=0.5 as time increases 

 

At α-level = 0.5, the solution is asymptotically stable and there is no fuzzy solution 

for 𝑌(𝑡) since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 35.57 , 𝑣(𝑡) → 42.17, 𝑟(𝑡) → 39.52 𝑎𝑛𝑑 𝑠(𝑡) →

28.11.   
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Figure (3.2.113): The solution of (53) at α=0.5 

 

  

 
Figure (3.2.116): The solution of (54) at α=0.5 

 

 

 
Figure (3.2.119): The solution of (55) at α=0.5 
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Figure (3.2.124): The solution of (56) at α=0.5 for short time period 

 

 

 
Figures (3.2.125) and (3.2.126): The solution of (56) at α=0.5 as time increases 

 

At α-level = 0.5, the solution is asymptotically stable and there is no fuzzy solution 

for 𝑌(𝑡) since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 37.94 , 𝑣(𝑡) → 44.98, 𝑟(𝑡) → 39.52 ,  𝑠(𝑡) →

28.11.   
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Figure (3.2.129): The solution of (57) at α=0.5 

 

 

 
Figure (3.2.132): The solution of (58) at α=0.5 

 

 

 
Figure (3.2.135): The solution of (59) at α=0.5 
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Figure (3.2.140): The solution of (60) at α=0.5 for short time period  

 

 

 
Figures (3.2.141) and (3.2.142): The solution of (60) at α=0.5 as time increases 

 

At α-level = 0.5, the solution is asymptotically stable and there is no fuzzy solution 

for 𝑌(𝑡) since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 38.46 , 𝑣(𝑡) → 55.47, 𝑟(𝑡) → 48.08 ,  𝑠(𝑡) →

23.11.    



158 
 

 
Figure (3.2.151): The solution of (62) at α=0.5 

 

 

 
Figure (3.2.154): The solution of (63) at α=0.5 

 

 

 
Figure (3.2.157): The solution of (64) at α=0.5 
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Figure (3.2.161): The solution of (65) at α=0.5 for short time period  

 

 
 

 
Figure (3.2.162) and figure (3.2.163): The solution of (65) at α=0.5 as time 

increases 

 

At α-level = 0.5, The solution is asymptotically stable but there are no fuzzy 

solutions for 𝑋(𝑡) 𝑎𝑛𝑑 𝑌(𝑡). Since 𝑎𝑠 𝑡 → ∞ ,  𝑢(𝑡) → 53.92 , 𝑣(𝑡) →

31.16, 𝑟(𝑡) → 36.11 ,  𝑠(𝑡) → 32.45. 
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Figure (4.1.3): The solution of (68) at α=0.5 

 

 

 
Figure (4.1.6): The solution of (69) at α=0.5 

 

 

 
Figure (4.1.9): The solution of (70) at α=0.5 
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Figure (4.1.13): The solution of (71) at α=0.5 for short time period  

 

 
Figure (4.1.14): The solution of (71) at α=0.5 as time increase 

 

 

 
Figure (4.2.2): The solution of (74) at α=0.5 
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Figure (4.2.5): The solution of (75) at α=0.5 

 

 

 
Figure (4.2.8): The solution of (76) at α=0.5 

 

 

 
Figure (4.2.13): The solution of (77) at α=0.5 for short time period  
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Figure (4.2.14): The solution of (77) at α=0.5 as time increases 

 

 

The following code is the general code used to find the simulations and the 

graphical solutions for each system of ODE in this thesis. 

%Here u=y(1), v=y(2), r=y(3), s=y(4)  

f1 = @(t,y)[eq1;eq2;eq3; eq4]; 
%tf is the final time 
tf=x; 
%T is the time interval, and Y is the solutions matrix 
[T,Y] = ode45(f1,[0 x],[𝑢0, 𝑣0, 𝑟0, 𝑠0]) 

  
%We plot the solutions 
plot(T,Y(:,1),'r',T,Y(:,2),'b',T,Y(:,3),'k',T,Y(:,4),'g

') 
ylabel('X(t) , Y(t)') 
xlabel('Time') 
legend('u','v','r','s') 

  
legend('Location','northeastoutside') 

 

 

 
 


