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Modeling of Biological Population Using Fuzzy Differential Equations: Fuzzy
Predator-Prey Models and Numerical Solutions

By: Doa’a Farekh
Supervised by: Prof. Dr. Saed Mallak and Prof. Dr. Basem Attili

Abstract

This thesis considers the application of fuzzy differential equations in modeling of
predator and prey populations. When determining the initial populations of
predator and prey, uncertainty can arise. We study a predator-prey model with
different fuzzy initial populations using many cases of fuzzy numbers. The
uncertainty can also arise when determining the birth and death rates of prey and
predator, so we construct a fuzzy predator-prey model of fuzzy parameters. To the
best of our knowledge, it is the first time to explore a fuzzy predator-prey model
with functional response arctan(ax) and we study it with fuzzy initial populations
and then with fuzzy parameters. We use generalized Hukuhara derivative and solve
all models numerically by Runge-Kutta method. Simulations are made and
graphical representations are also provided to show the evolution of both
populations over time.

At the end, we discuss the stability of the equilibrium points. From the simulations
and graphs, we conclude that the fuzzy solution is not always better than the crisp
solution biologically and sometimes they are unacceptable in fuzzy logic and some
equilibrium points are unstable. We note that the solutions with triangular fuzzy
numbers and shaped triangular fuzzy number are better than those with trapezoidal
fuzzy numbers. As the initial populations of the prey and predator are closer to
each other, the solution will be better since the lower and upper bounds are equal
and positive. When we fuzzify the parameters of predator-prey model, we
sometimes don’t get a good fuzzy solution. However, as the endpoints of fuzzy
numbers are closer, the solution is periodic and the equilibrium points are stable.
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Chapter 1

Introduction

Fuzzy set theory and its applications have become a subject of increasing interest
for many authors. Many articles in different areas were published since introducing
the concepts of Fuzzy sets and Probability Measure of Fuzzy Events by Zadeh in
1965 [33-34].

The basic arithmetic structure of fuzzy numbers was later developed by Zadeh
[33], Kaufman and Gupta [19], Klir and Yuan [20] and Zimmerman [35]. Also the
concepts of derivative of the fuzzy valued functions were introduced by Bede and
Gal [5], Bede and Stefanini [7-9], Cano and Flores [11], Gomes and Barros [16],
Pirzada and Vakaskar [29], Puri and Ralescu [30] and Stefanini [31].

Puri and Ralescu [30] defined the derivative for fuzzy functions based on the
concept of Hukuhara derivative for set-valued functions. The first theorem of
existence using this derivative was proposed by Kaleva [17]. In [29], Pirzada and
Vakaskar discussed the existence of Hukuhara differentiability of fuzzy valued
functions. But it soon appeared that the Hukuhara derivative has a shortcoming
which fuzzifies the solution as time goes on. To overcome this situation and to
solve this shortcoming, Bede and Gal [5] introduced and studied the generalized
concepts of differentiability and as a result the concept of strongly generalized
derivative was introduced.

Differential equations are commonly used for modeling real world phenomena.
Unfortunately, every time uncertainty can appear with real world problems; the
uncertainty can arise from deficient data, measurement errors or when determining
initial conditions. Fuzzy set theory is a powerful tool to overcome these problems.
The term fuzzy differential equation was used for the first time in 1980 by Kandel
and Byatt [18]. Later on, many authors defined fuzzy differential equations with a
derivative defined on Hukuhara derivative and its generalizations, see [5-
8,11,15,17].

An initial value problem (IVP) is a system of ordinary differential equations
together with an initial condition:

x'() = f(t,x(®) ,x(to) = x¢

where f is a function of t and x and x, is an initial value and x'(t) is derivative of
function x with respect to t. Assume that the initial value problem has an uncertain



initial value modeled by a fuzzy interval, then we have the following initial value
problem:

X®)=f(tXx®) X)) =X

where f:[0,T] X R — Ry is a fuzzy interval-valued function and X, € Ry, Ry is
the family of all fuzzy subsets of R™.

Numerical methods have been developed to solve fuzzy differential equation, for
example Euler's Method and Runge-Kutta Method, see [1,2,13,21,26].

Mathematical biology is one example employing mathematical tools to model
biological phenomena, such as epidemiology problems, population dynamics,
ecological systems and genetics, see [14]. As mentioned before, uncertainties are
present in the process of modeling. To deal with uncertainties, we use fuzzy
differential equations. The employment of fuzzy sets theory is present in many
studies in biological problems, see for example [1-3], [15] and [27-28].

One of the mathematical biology models is the predator-prey model (predation),
the predation is amongst the oldest in ecology. The Italian mathematician Volterra
Is said to have developed his ideas about predation from watching the rise and fall
of Adriatic fishing fleets. When fishing was good, the number of fishermen
increased, drawn by the success of others. After a time, the fish declined, perhaps
due to over-harvest, and then the number of fishermen also declined. After some
time, the cycle repeated [32].

An organism which feeds on another organism for their food is called predator
while the organism that is fed upon is termed as the prey. This kind of interaction
between the prey and predator is known as predation. Typically, a predator tends to
be larger than that of the prey, and hence they consume many preys during their
life cycle. During the act of predation often the death of prey will occur due to the
absorption of the prey’s tissue by the predator. Typical examples of predation are
bats eating the insects, snakes eating mice, and the whales eating the krill [32].

Without the prey the predators will decrease, and without the predator the prey
will increase. A mathematical model showing how an ecological balance can be
maintained when both are present was proposed in 1925 by Lotka and Volterra.
Let X(t) and Y (t) be the population of prey and predator, respectively, at time t.
We have the following assumptions:

1. In the absence of the predator the prey grows without bound, thus z—f =

aX, a>0forY =0.



2. In the absence of the prey the predator dies out, thus % =—cY, ¢c>

0forX = 0.

3. The increase in the number of predators is wholly dependent on the food
supply (the prey) and the prey are consumed at a rate proportional to the
number of encounters between predators and prey. Encounters decrease the
number of prey and increase the number of predators. A fixed proportion of
prey is killed in each encounter, and the rate of population growth of the
predator is enhanced by a factor proportional to the amount of prey
consumed.

As a consequence, we have the equations:

X— X — bXY
FTE
dY— Y +dXY 1

The constants a, b, c and d are positive, a and c are the growth rate of the prey and
the death rate of the predator, respectively, and b and d are measures of the effect
of the interaction between the two species. System (1) is called the simplest model
of predator —prey.

What happens for given initial values of Y > 0and X > 0? Will the predators
eat all of their prey and in turn die out? Will the predators die out because of a too
low level of prey and then the prey grows without bound? Will an equilibrium state
be reached, or will a cyclic fluctuation of prey and predator occur? [10].

Many articles were published about predator-prey models that answer the
previous questions in different cases, for example see [4,14].

Many authors have studied a predator-prey model which takes into account the
uncertainty in the initial populations of predator and prey. In their works, the
authors gave numerical solutions to differential equations with fuzzy initial
conditions and some of them discussed the stability of the solutions [1-3], [24] and
[28].

Ahmed and Baets [1] studied a predator-prey population model with fuzzy initial
populations of predator and prey. This model was solved numerically by means of
a 4th-order Runge-Kutta method. Simulations were made and  graphical
representations were also provided to show the evolution of both populations over

3



time. In addition to that, the stability of the equilibrium points was also described
and they obtained fuzzy stable equilibrium points.

Ahmed and Hasan [2] solved the predator-prey model numerically by means of a
fuzzy Euler method. The stability of the new fuzzy model was studied and was
shown graphically in the fuzzy phase plane. At the beginning, they obtained
unstable fuzzy equilibrium point. This problem arisen due to the cumulative errors
generated in each step of the fuzzy Euler method. However, when they used a very
small step size, the fuzzy equilibrium point became fuzzy stable.

Akin and Oruc [3] used the concept of generalized differentiability to solve the
Lotka—\Voltera model and obtained graphical solutions. The uniqueness of the
solution of a fuzzy initial value problem was lost when they used the strongly
generalized derivative concept, this situation was considered as a disadvantage.
Actually, it is not a disadvantage because researchers can choose the best solution
which reflects better the behavior of the system under consideration.

In this thesis, chapter 3, we study the fuzzy predator-prey model in [2] with
different initial conditions, then give numerical and graphical solutions by using
Runge-Kutta method in Matlab [25] and discuss the behavior and the stability of
the solutions. Then we construct a predator and prey model with fuzzy birth and
death rates. By using Matlab we make simulations and graphical representations
and discuss the results.

In chapter 4, we follow the footsteps of [4] where the researchers dealt with the
general predator prey model of the form

X@®) =rX(1-X)-Y tan"*(aX)
Y'(t) = —dY + sY tan~1(aX).

Where X and Y are the prey and the predator population sizes respectively, r, s, a
and d are positive parameters. The researchers established the necessary and
sufficient condition for the nonexistence of limit cycles of the model. For first
time, we construct a numerical example for the model in [4], after number of
attempts, to obtain a model satisfying the existence condition and has a periodic
solution and then present the solution numerically and graphically. Then we
convert the model to a fuzzy model with fuzzy initial conditions and discuss the
results. Finally, we fuzzify the parameters of the model and find the numerical and
graphical solutions.

In chapter 5, we give some conclusions and remarks.



Chapter 2
Basic Concepts

2.1 Preliminaries

Definition 1 A fuzzy subset A of some set Q is defined by its membership
function written A(x) which produces values in [0,1] for all x in Q. That is A(x) is
a function mapping Q into[0,1]. If A(x) is always equal to one or zero then the
subset A is said to be crisp (classical) set. In the crisp case , A(x) is called the
characteristic function (or indicator function) and it is often denoted by y, . If
xa(x)= 0, then x does not belong to A, whereas if y,(x) =1, then x belongs to A.
The fuzzy subset is a generalization in which an element of Q has partial
membership to A characterized by a degree in the interval [0,1], when A(x) =
0.6 we say the membership value of x in A is 0.6 .

Definition 2 Let A be a fuzzy subset of Q. An a - level of A, written [4], , IS
defined as {xe Q: A(x) = a} for 0 < a < 1. [4],, the support of A is defined as
the closure of the union of all the [A4],, for 0 < a < 1. The core of A is the set of
all elements in Q with membership degree in A equal to 1.

Definition 3 A fuzzy number N is a fuzzy subset of the real numbers satisfying:

1. Ax:N(x) = 1.
2. [N],is aclosed and bounded interval for 0 < a < 1.

The family of all fuzzy numbers will be denoted by Rp.

A special type of fuzzy numbers M is called a triangular fuzzy number. M is
defined by three numbers a; < a, < a; where:

1. M(x) =1at x = a,.

2. The graph of M(x) on [a4, a,] is a straight line from (a4, 0) to (a,, 1) and
also on [a,,a;] the graph is a straight line from (a,,1) to (as,0) (3)
M(x) =0forx < a,orx > as.

We write M = (a4, a,, ag) for triangular fuzzy number M. If at least one of the
graphs described above is not a straight line (curve), then M is called triangular
shaped fuzzy number and we write M = (a4, a,, as).



Another special type of fuzzy numbers M is called a trapezoidal fuzzy number.
Here M is defined by four numbers a, < a, < a; < a, where:

1. M(x) =1o0n[a,, as].
2. The graph of M(x) on [a4,a,] is a straight line from (a,,0) to (a,,1) and

also on [as3,a,] the graph is a straight line from (a3, 1) to (a4, 0) (3)
M(x) =0forx < a, orx = a,.

We write M = (a4, a,, as, a,) for trapezoidal fuzzy number M. If at least one
of the graphs described above is not a straight line (curve), then M is called
trapezoidal shaped fuzzy number and we write M = (aq, a,,as,a,). If M(x) =
w < 1on [a,,as], then it is called a generalized trapezoidal fuzzy number.

A fuzzy number is determined by its alpha cuts, @ € [0,1]. These alpha cuts
satisfy the relation if a; > a, then [A],, C [A]y,, Where aq,a, € [0,1]. More
details, properties and operations can be found in [6,7], [10,11] and [20]. Other
types of fuzzy numbers and their orders can be found in [12,13] and [22,23].

If u is a fuzzy number, then [u], = [Uu14,Us,] Where u,, = min{s:s € [u],}
and u,, = max{s:s € [u],} for each a € [0,1].
Theorem 1[6,7] Suppose that u,, u,: [0,1] — R satisfy the following conditions:

- u, Is a bounded increasing function and u, is a bounded decreasing function
withu,, < uy, at a — level = 1..

- for each k € (0,1],u, and u, are left-continuous functions at a = k.
- u, and u, are right-continuous at « = 0.

Then u: R — [0,1] defined by u(s) = sup{a:u;, < s < uy,} is a fuzzy number
with parameterization [u;q, Us,].

Furthermore, if u: R — [0,1] is a fuzzy number with parameterization [u;, U],
then the functions u; and u, satisfy the aforementioned conditions.

Definition 4 The complete metric structure on the set of all fuzzy numbers Ryis
given by the Hausdorff distance mapping D: Rp X Rp — [0, 0) such that D(u, v) =
SUPg<g<1 MaX{ Uiy — Vigl, Uy, — Voo |} fOr arbitrary fuzzy numbers u and v.

Theorem 2 [6-7] If uand v are two fuzzy numbers, then for each a € [0,1], we
have:

- [u + v]a = [u]a + [v]a = [ula t Vig, Ugg T vZa]-



'[Auu]a = .u[u]a = [min{ﬂular u uZa} ’ max{ﬂula: u uZa}]-

- [uv], =

[min{ulavlar U1 V2 U2 V1a» uZaUZa} ) max{ulavla' U1a V2 U2qV1as u2av2a}] '

Definition 5 Let u, v € Rp. If there exists an element w € Ry such that u = v +
w, then w is called the Hukuhara difference (H-difference) of w and v, denoted by

u o .
Remark 1

1. This difference is not defined for pairs of fuzzy numbers such that the
support of a fuzzy number has a bigger diameter than the one that is
subtracted.

2. The H-difference has the property u © v = {0}. So ,u © u = {0},

3. u+v)BQv=u

4. The H-difference is unique and its a — level is [u © v], = [uiq —
Vi U2a—-V24]

Many authors proposed two new definitions for difference of fuzzy numbers,
which generalize the H-difference.

Definition 6 Let u,v € Rr. The generalized Hukuhara difference (gH-
difference) u © 4y v = w, where w € Ry, if it exists, such that: (1) u =v +w or
Qv=u—w.

Remark 2

1. The gH-difference is more general than H-difference. If the H-difference
exists then the gH-difference will existand u O,y v = u O v.

2. [u©gy v]g = [Minfuiq — V1, Uza-V2a} Max{Uyq — V14, Uza-V2q]]
3. The conditions for existence of u @,y v = w are

o Case(1): Cig = Uig — Vig ANd Cop = Uyy — Voy with
C1q INCreasing , c,, decreasing, ciq < Cyq4,for all @ € [0,1].
o Case(2): Cig = Upy — Voq AN Coq = U1q — V1g with

C1q INCreasing , c,, decreasing, ¢y < Cy4,for all @ € [0,1].
4. u©g4yu = {0}.
5. (u+v) Oy v =u



Definition 7 Let wu,v € Rr. The generalized difference (g-difference)
U, v =w, where w € Rg, if it exists, with a — level [u@g v]a=

cl(UBZa [ulg ©gn [v]ﬁ),Va € [0,1].
Remark 3

1. The g-difference is more general than gH-difference. If the gH-difference
exist, then the g-difference exists and it is the same.

2. [u©gv]e = [Ll?r>1£ minfu, — vla:uZa—UZ(x}:Zup max{uq — Vig Uza-V2a}l-
= 2

Gomes and Barros in [16] showed that the g-difference is not defined for every
pair of fuzzy numbers by a counter example. They also showed that a
convexification is needed in order to assure that the result is a fuzzy number and
they suggest a new definition for the g-difference using the convex hull (conv).

[u Oy v]a = cl(conv Upsqa [Ulp Ogn [v]ﬁ),‘v’a € [0,1].

Definition 8 Let f: [a, b] = Rg. f is Hukuhara differentiable (H- differentiable)
at x, if the limits:

lim f(xo+h)Of (xo) and lim
h-0%* h h-0%*

f(x0)Of (xo—h)
h

exist and equal.
Remark 4 Let f,g:[a,b] - Rp

L [f'yxodle = [f' 1o (o), £ (x0)]
2. Let f and g are H-differentiable, then
e f+Pu=f"y+49'y
e (AN) =21y
3. The H-difference doesn’t always exist, so the H-differentiable doesn’t
always exist.
4. Let f(x) = c®g(x)where f:[a,b] » Rr, c € Rp, for allx € [a,b], and
let g: [a, b] — R, be differentiable at x, € [a, b] c R,.
If g'(xo) > Othen f is H — dif ferentiable atx, with f'(x) = c®g'(x).
But if g'(x) < 0then f isnot H — dif ferentiable [29].

Definition 9 Let f:[a,b] - Rp. f is strongly generalized differentiable (GH-
differentiable) at x,, if the limits of some pair of the following exist and equal:

1. lim f(xo+h)Of (x0) and lim f(x0)Of(xo—h) '
h—-0t h h-ot h




f(x0)Of (x9+h)

2. lim and lim L&0=MO/ o).
h—-0%t —-h h-0t —-h

3 lim f(xo+h)Of (x0) and lim f(xo—h)Of (xo) .
h—-0t h h—-0t -h

4 lim f(x0)Of (xo+h) and lim f(x0)Of (xo—h) .
h—-0+ —-h h—-0% h

More about Fuzzy calculus can be found in [15].

Definition 10 Let f:[a,b] » Rg. f is (1)-differentiable on [a,b] if f is
differentiable in the sense (1) of definition 9. Similarly, f is (2)-differentiable on
[a, b] if f is differentiable in the sense (2) of definition 9.

Theorem 3 Let f:[a,b] = Rg. Where [f(x)], = [fie(X), foq(x)] for each a €
[0,1]

1. If fis (1)-differentiable , then f;, and f,, are differentiable functions and
[f']a = [fia (), f2o (O] .

2. If fis (2)-differentiable , then f;, and f,, are differentiable functions and
("GOl = [f2a (%), fia (] .

Definition 11 Let f:[a,b] = Rp. f is generalized Hukuhara differentiable (gH-

differentiable) at x, if the limit lim 202 9a#/ @) it and belong to R, and

h—-0
f’gH (x,) is the generalized Hukuhara derivative (gH- derivative) of f at x,.

Theorem 4 Let f:[a,b] = Rr. Where [f(x)], = [fig(X), fo(x)] for each a €
[0,1], such that the functions f;,(x)and f,,(x) are real-valued functions,
differentiable with respect to x, uniformly in a € [0,1]. Then the function f(x) is

gH-differentiable at a fixed x € [a, b] if and only if one of the following two cases
holds:

a. f'1,(x)is increasing, ,f',,(x) is decreasing as functions of «,and
flia(@) < floa(x) at a — level = 1.

b. f'14(x)is decreasing, ,f',,(x) is increasing as functions of «,and
fl2a(x) < f',,(x) ata — level = 1.

Moreover, [f’gH(x)]a = [min{f’, (), ', (O}, max{f’, (), f', (O} ]

Definition 12 Let f:[a,b] » Rpandx, € (a,b) with f;,(x) and f,,(x) both
differentiable at x,. We say that :



1. f is (1)-differentiable at xo if [, (x0)] = [, (ko) 7,0 (%0)].

2. fis (2)-differentiable at xo if [f',, (xo)| =[f;q(x0) f'1(x0)], Va €
[0,1].

Remark 5 In [9], Bede and Stefanini showed that the gH-differentiability concept
Is more general than the GH-differentiability by giving a counter example.

Definition 13 Let f: [a, b] = Rg. f is generalized differentiable (g- differentiable)

at x, if the }lin(l)f(x“h)f“"f(x") exist and belong to Ry and f' (xo) is the

generalized derivative (g-derivative) of f at x,. Moreover,

[f,g(x)]a - [égg min{flla(x)'fIZa(x)}’zgg max{f,la(x)'fIZa(x)} :
For more details, they can be found in [5, 6,8,9,11,15,16,20,29,31].

2.2 Fuzzy Differential Equations and Numerical Methods

Consider that the classical initial value problem (IVP)

x'() = f(t,x(®) ,x(to) = xo (2)

where f is a function of t and x and x, is an initial value and x'(t) is derivative of
function x with respect to t. Assume that the initial value x, is a fuzzy number,
then we have the following fuzzy initial value problem (FIVP):

X'@®=f(tX®), X(to) = Xo 3)
where f:[0,T] X Rg = Rp is a fuzzy interval-valued function and X, € RE.

The topics of numerical methods for solving fuzzy differential equations (FDE)
have been rapidly growing in recent years. Some authors used numerical methods
for FDE such as the fuzzy Euler method, Runge-Kutta method, as in
[1,2,13,21,26]. In [13], they extended Runge-Kutta method for solving FDE
numerically under generalized differentiability. They also compared the errors of
generalized Runge-Kutta and Euler methods and observed that the error of
generalized Runge-Kutta method was less than the generalized Euler method; that
Is, the generalized Runge-Kutta method was better than generalized Euler method.
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In our thesis we will solve FDE’s by converting a fuzzy system to a system of
ODE’s and use Matlab with solver ode45. ode45 can only solve a first order ODE.
Therefore, to solve a higher order ODE, the ODE has to be first converted to a set
of first order ODE's. It uses six stages, provides fourth and fifth order formulas of
Runge-Kutta method. It compares methods of orders four and five to estimate error
and determine step size. The fourth order Runge-Kutta method, the most widely
used is the following:

Given the IVP: x’ = f(¢, x(t) )with x(to) = x, and h a step size, we compute:

ki = hf(t;, x;)
h k4
k, = hf(t; +E’xi +?)
h k,
ks = hf(t; +§:xi +7)
k4_ = hf(ti + h,xi + k3)
1
xl'+1 = xl + g(kl + Zkz + 2k3 + k4)
Fori=0,1,...,n—1.

2.3 Stability of the Equilibrium Point
Definition 14 The system

dx
j_t = f(x,y)
Yy _

Is called an autonomous system of differential equations. In such a system, the
independent variable t is absent (i.e., t does not appear explicitly). The values of
(x,y) for which f(x,y) = 0and g(x,y) = 0 are called the equilibrium points,
of the system. Hence, there is no change occurs in either the x or y. The stability
discusses the behavior of the curves near an equilibrium point.

Proposition 1 [24] x is an equilibrium point of (2) if and only if y(; is an
equilibrium point of (3), where y,; is the characteristic function of x.

In order to determine the stability of the equilibrium points of (3), start with fuzzy
initial values near those equilibrium points. In this case, one of the following three
possibilities can take place:

11



1. If the fuzzy initial values are sufficiently close to the fuzzy equilibrium
points and stay close when t increases, then the fuzzy equilibrium points
are said to be fuzzy stable.

2. If the fuzzy initial values are sufficiently close to the fuzzy equilibrium
points and approach them when t approaches infinity, then the fuzzy
equilibrium points are said to be asymptotically fuzzy stable.

3. If the fuzzy initial values are sufficiently close to the fuzzy equilibrium
points and move away from them when t increases, then the fuzzy
equilibrium points are said to be fuzzy unstable.

2.4 Fuzzy Predator-Prey Models

In data collection, both populations are nearly always affected by uncertainty.
For the preliminary case, we assume that the initial populations of predator and
prey are fuzzy and the parameters remain crisp numbers. Thus model (1) becomes:

dX

o aX — bXY
ac -

dYy
— = —cY +dXY
dt

X(to) = Xoand Y(to) =Y, (4)

where X,andY, are fuzzy numbers and a,b,candd are positive real (crisp)
numbers.

In chapter 3 we study the fuzzy predator-prey model which was presented in
[2] and solved by Euler method. We will study this model for different cases of
fuzzy numbers for the initial conditions and analyze them.

12



Chapter 3

An Application of Fuzzy Predator-Prey Model: The
Simplest Model.

3.1: A Predator-Prey Model with Fuzzy Initial Conditions

Consider the following predator- prey model:

x'(t) =x —0.03xy

y'(t) = —0.4y+ 0.01xy

With initial conditions:

X, =15, y, =15 (5)
Where x(t) and y(t) are numbers of prey and predator at time ¢, respectively. The
equilibrium points of the model are the points at which the derivatives equal to
zero. Solving the resulting system, model (5) has two equilibrium points
(0,0) and (40,33.33). We solve the model numerically by Runge-Kutta method in
Matlab. The solution for model (5) which we called it the crisp (classical) solution
for the time interval [0,100] is given in figure (3.1.1) and table (3.1.1).

Table (3.1.1): The crisp solution of (5)

Time x(t) y(t)
0.0000 15.0000 | 15.0000
5.0000 74.3290 | 65.9610

10.0000 8.6870 | 20.3800
15.0000 | 125.5500 | 30.9900
20.0000 6.2827 | 29.2910
25.0000 | 81.9850 | 14.2220
30.0000 6.7937 | 43.3010
35.0000 | 39.1410 | 11.4180
40.0000 | 13.1750 | 62.1540
45.0000 | 18.3480 | 13.1480
50.0000 | 48.1690 | 73.3960
55.0000 9.5843 | 17.9990
60.0000 | 126.3700 | 40.5810
65.0000 6.2694 | 26.4420
70.0000 | 95.1240 | 15.6750
75.0000 6.0738 | 40.0000
80.0000 | 44.4160 | 11.1530
85.0000 | 10.8280 | 59.3380
90.0000 | 19.6920 | 12.4410
95.0000 | 39.9810 | 74.8640
100.0000 | 9.5716 | 17.0560
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Figure (3.1.1): The crisp solution

The first equilibrium point is uninteresting because there are no populations to
observe in the model. It means that the predator populations can only grow if there
IS not any predator to begin with, and the same holds for the prey populations.
However, the second equilibrium point is of interest. From the previous table and
figure, we can note that the solution is periodic about the equilibrium point
(40,33.33), so this point is stable.

Now, we want to convert model (5) to a fuzzy model by assuming that x, and y,
are fuzzy numbers.

For case 1: we convert the initial conditions to triangular fuzzy numbers as
follows: [xy], =[14+ a,16 — ], [yoly, =[14 + @, 16 — a]. Let the a-level
intervals of X(t) and Y(t) be [X(t)], = [u(t),v(t)] and [Y ()], = [r(t),s(t)],
respectively. First we find the generalized Hukuhara derivatives of X(t) and Y(t):

[ {X — 0.03XY}, max X - o.osxy}]
<X O] S (O] xe[X(0)]q VEIY (©)]a

[X'gu®)] =

{—0.4Y + 0.01XY}, {—0.4Y — 001XY}]

= .
[ gH( Na = [X(t)]a ye[Y(t)]a [X(t)]a ye[Y(t)

Second, we assume that X(t) and Y(t) are (1)-differentiable, we called this form
(1,1)-differentiable, then [x',,®)], = [u'(t),v'(®)] and [v ;O] = [r'(®), s'(D)].
So, model (5) becomes a system of ordinary differential equations with four
equations and four variables:

u' =u—0.03vs
v/ =v—0.03ur
r'=—0.4s+ 0.01ur
= —0.4r+ 0.01vs
Uy=1M4+avg=16—-a,1rn=14+a,5) =16 — « (6)
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Third we solve (6) by Runge-Kutta method in Matlab using the numerical solver
ode45 at a-level=0,0.5,1. The model has two fuzzy -equilibrium points:
X03333)aNd x(00) - At a-level = 0, the solution is table (3.1.2), where its graph is

figure (3.1.2):

Table (3.1.2): The solution of (6) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 | 14.0000 | 16.0000
0.2500 15.6670 18.8473 | 12.9332 | 15.3332
0.5000 17.4820 224482 | 11.9394 | 14.8656
0.7500 19.3670 27.0264 | 10.9946 | 14.6262
1.0000 21.1660 32.8839 | 10.0663 | 14.6636
1.2500 22.5880 40.4312 9.1092 15.0576
1.5000 23.0900 50.2313 8.0569 15.9429
1.7500 21.6840 63.0542 6.8114 17.5501
2.0000 16.5030 79.9389 5.2282 20.2979
2.2500 3.9817 102.2151 | 3.1076 | 24.9730
2.5000 | -23.1180 | 131.3063 | 0.2211 33.1748
2.7500 | -80.1550 | 167.8434 | -3.5389 | 48.3322
3.0000 | -200.9900 | 208.9989 | -7.7090 | 78.0937
3.2500 | -459.9900 | 243.2808 | -10.6746 | 139.1784
3.5000 | -996.8000 | 248.0578 | -10.8598 | 261.0619
3.7500 | -1958.0000 | 194.5493 | -9.6853 | 462.4357
4.0000 | -3141.1000 | 54.2850 -8.4039 | 644.4873
4.2500 | -3811.0000 | -154.5092 | -6.3015 | 573.3541
4.5000 | -3961.8000 | -360.5598 | -3.3223 | 299.5329
4.7500 | -4387.0000 | -535.8965 | -1.0252 | 97.3433
5.0000 | -5364.7000 | -709.0471 | -0.1807 | 20.6269

Figure (3.1.2): The solution of (6) at a=0

At a-level = 0.5, the solution is table (3.1.3) and figure (3.1.3):
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Table (3.1.3): The solution of (5) at a=0.5

Time u(t) v(t) r(t) s(t)
0.0000 | 14.5000 15.5000 14.5000 | 15.5000
0.2500 | 16.4710 18.0610 13.5310 | 14.7310
0.5000 | 18.7500 21.2330 12.6640 | 14.1270
0.7500 | 21.3450 25.1750 11.8880 | 13.7040
1.0000 | 24.2330 30.0930 11.1860 | 13.4850
1.2500 | 27.3340 36.2610 10.5380 | 13.5130
1.5000 | 30.4630 44.0450 9.9108 | 13.8570
1.7500 | 33.2370 53.9510 9.2550 | 14.6320
2.0000 | 34.8990 66.6840 8.4874 | 16.0400
2.2500 | 33.9750 83.2450 7.4694 | 18.4430
2.5000 | 27.4970 105.0500 5.9723 | 22.5400
2.7500 9.3367 134.0200 3.6428 | 29.7540
3.0000 | -34.1760 172.1200 0.0506 | 43.2790
3.2500 | -135.3600 | 219.2200 | -4.9244 | 70.7630
3.5000 | -373.4000 | 265.9300 | -9.8945 | 131.0700
3.7500 | -924.6000 | 284.0100 | -11.6260 | 264.8900
4.0000 | -2032.8000 | 232.6300 | -10.4330 | 516.5400
4.2500 | -3501.1000 | 71.1710 -9.0457 | 775.6500
4.5000 | -4214.1000 | -178.8300 | -6.7784 | 684.2800
4.7500 | -4177.2000 | -415.8800 | -3.4036 | 322.2900
5.0000 | -4553.8000 | -608.5800 | -0.9155 | 89.1400

Figure (3.1.3): The sBIution of (6) at a=0.5

At a-level = 1, the solution is table (3.1.4) and figure (3.1.4):
Table (3.1.4): The solution of (6) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 | 15.0000 | 15.0000 | 15.0000 | 15.0000
5.0000 | 74.3290 | 74.3290 | 65.9610 | 65.9610

10.0000 | 8.6870 8.6870 | 20.3800 | 20.3800
15.0000 | 125.5500 | 125.5500 | 30.9900 | 30.9900
20.0000 | 6.2827 6.2827 | 29.2910 | 29.2910
25.0000 | 81.9850 | 81.9850 | 14.2220 | 14.2220
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30.0000 | 6.7937 6.7937 | 43.3010 | 43.3010
35.0000 | 39.1410 | 39.1410 | 11.4180 | 11.4180
40.0000 | 13.1750 | 13.1750 | 62.1540 | 62.1540
45.0000 | 18.3480 | 18.3480 | 13.1480 | 13.1480
50.0000 | 48.1690 | 48.1690 | 73.3960 | 73.3960
55.0000 | 9.5843 9.5843 | 17.9990 | 17.9990
60.0000 | 126.3700 | 126.3700 | 40.5810 | 40.5810
65.0000 | 6.2694 6.2694 | 26.4420 | 26.4420
70.0000 | 95.1240 | 95.1240 | 15.6750 | 15.6750
75.0000 | 6.0738 6.0738 | 40.0000 | 40.0000
80.0000 | 44.4160 | 44.4160 | 11.1530 | 11.1530
85.0000 | 10.8280 | 10.8280 | 59.3380 | 59.3380
90.0000 | 19.6920 | 19.6920 | 12.4410 | 12.4410
95.0000 | 39.9810 | 39.9810 | 74.8640 | 74.8640
100.0000 | 9.5716 9.5716 | 17.0560 | 17.0560

X, Y()

Figure (3.1.4): The solution of (6) at o=1

From previous tables and figures, we can note that when a < 1, the solutions of
u(t),v(t)and r(t) » —oast — o. So, there are no acceptable solutions for
x(t) and y(t) since x(t) and y(t) are numbers of populations which can’t be
negative. Also we can note that the interesting equilibrium point is fuzzy unstable.
When a = 1, we obtain solution equivalent to the crisp solution with stable
equilibrium point y 40 33.33)-

Now, If x(t) is (1)-differentiable and y(t) is (2)- differentiable, form (1,2)-
differentiable, then [X'(t)], = [u'(t), v'(t)] and [Y'(t)], = [s'(t), r'(t)] then the
model becomes as follow:
u' =u—0.03vs
v/ =v—0.03ur
r' = —0.4r + 0.01vs
s’ =—0.4s+ 0.01ur
uy=14+avg=16—-a,1rn=14+a,s5 =16 —« (7)
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We solve (7) by Runge-Kutta method in Matlab at different a-levels. At a-level =
0, the solution is figure (3.1.5)

X, ()

Figure (3.1.5): The solution of (7) at a=0

At a-level = 0.5, the solution is figure (3.1.6):

X(t), Y()

Figure (3.1.6): The éf)lution of (7) at a=0.5

At a-level = 1, the solution is table (3.1.5) and figure (3.1.7):

Table (3.1.5): The solution of (6) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 | 15.0000 | 15.0000 | 15.0000 | 15.0000
5.0000 | 74.3290 | 74.3290 | 65.9610 | 65.9610

10.0000 | 8.6870 8.6870 | 20.3800 | 20.3800
15.0000 | 125.5500 | 125.5500 | 30.9900 | 30.9900
20.0000 | 6.2827 6.2827 | 29.2910 | 29.2910
25.0000 | 81.9850 | 81.9850 | 14.2220 | 14.2220
30.0000 | 6.7937 6.7937 | 43.3010 | 43.3010
35.0000 | 39.1410 | 39.1410 | 11.4180 | 11.4180
40.0000 | 13.1750 | 13.1750 | 62.1540 | 62.1540
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45.0000 | 18.3480 | 18.3480 | 13.1480 | 13.1480
50.0000 | 48.1690 | 48.1690 | 73.3960 | 73.3960
55.0000 | 9.5843 9.5843 | 17.9990 | 17.9990
60.0000 | 126.3700 | 126.3700 | 40.5810 | 40.5810
65.0000 | 6.2694 6.2694 | 26.4420 | 26.4420
70.0000 | 95.1240 | 95.1240 | 15.6750 | 15.6750
75.0000 | 6.0738 6.0738 | 40.0000 | 40.0000
80.0000 | 44.4160 | 44.4160 | 11.1530 | 11.1530
85.0000 | 10.8280 | 10.8280 | 59.3380 | 59.3380
90.0000 | 19.6920 | 19.6920 | 12.4410 | 12.4410
95.0000 | 39.9810 | 39.9810 | 74.8640 | 74.8640
100.0000 | 9.5716 9.5716 | 17.0560 | 17.0560

Figure (3.1.7): The solution of (7) at =1

One can conclude from the previous figures that when x(t) is (1)-differentiable
and y(t) is (2)- differentiable and for &« < 1 there is no fuzzy solution for y(t)
since r(t) > s(t) for some time intervals but there is a fuzzy solution for x(t).
However, the solutions are unacceptable due to the presence of negative values and
the equilibrium point x 4033.33) is fuzzy unstable. When a = 1, the solution is the
crisp one and x (40,33.33) is fuzzy stable equilibrium point.

Now, If x(t) is (2)-differentiable and y(t) is (1) - differentiable, form (2,1)-
differentiable, then [X'(t)], = [v'(t),u'(t)] and [Y'(t)], = [r'(t),s'(t)] then the
model becomes:

u' =v—0.03ur
v' =u—0.03vs
r' = —0.4s + 0.01ur
s'=—=0.4r + 0.01vs
uy=ld+avy=16—-arn=14+a,sp =16 -« (8)

We solve (8) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1. At a-level =
0, the solution is figure (3.1.8).
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Figure (3.1.8): Theléolution of (8) at a=0

At a-level = 0.5, the solution is figure (3.1.9)

280

X{). Y

Figure (3.1.9): The solution of (8) at a=0.5

At a-level =1, the solution is table (3.1.6) and figure (3.1.10)

Table (3.1.6): The solution of (6) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 | 15.0000 | 15.0000 | 15.0000 | 15.0000
5.0000 | 74.3290 | 74.3290 | 65.9610 | 65.9610

10.0000 | 8.6870 8.6870 | 20.3800 | 20.3800
15.0000 | 125.5500 | 125.5500 | 30.9900 | 30.9900
20.0000 | 6.2827 6.2827 | 29.2910 | 29.2910
25.0000 | 81.9850 | 81.9850 | 14.2220 | 14.2220
30.0000 | 6.7937 6.7937 | 43.3010 | 43.3010
35.0000 | 39.1410 | 39.1410 | 11.4180 | 11.4180
40.0000 | 13.1750 | 13.1750 | 62.1540 | 62.1540
45.0000 | 18.3480 | 18.3480 | 13.1480 | 13.1480
50.0000 | 48.1690 | 48.1690 | 73.3960 | 73.3960
55.0000 | 9.5843 9.5843 | 17.9990 | 17.9990
60.0000 | 126.3700 | 126.3700 | 40.5810 | 40.5810
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65.0000 | 6.2694 6.2694 | 26.4420 | 26.4420
70.0000 | 95.1240 | 95.1240 | 15.6750 | 15.6750
75.0000 | 6.0738 6.0738 | 40.0000 | 40.0000
80.0000 | 44.4160 | 44.4160 | 11.1530 | 11.1530
85.0000 | 10.8280 | 10.8280 | 59.3380 | 59.3380
90.0000 | 19.6920 | 19.6920 | 12.4410 | 12.4410
95.0000 | 39.9810 | 39.9810 | 74.8640 | 74.8640
100.0000 | 9.5716 9.5716 | 17.0560 | 17.0560

Figure (3.1.10): The solution of (8) at a=1

When x(t) is (2)-differentiable and y(t) is (1)-differentiable we note that for a <
1 there is no fuzzy solution for x(t) since u(t) > v(t) for some time intervals but
there is a fuzzy solution for y(t) which is unacceptable since r(t) » —cast —
oo, Here also y03333) IS unstable fuzzy equilibrium point. When «a = 1 the
solution is equivalent to the crisp solution and the equilibrium point is fuzzy stable.

Now, If x(t) and y(t) are (2)-differentiable, form (2,2)-differentiable, then
[X'(t)]e = [v'(),u'(t)] and [Y'(t)], = [s'(t),r'(t)] and the model becomes:
u' =v—0.03ur
v'=u—0.03vs
r'=—0.4r + 0.01vs
s’ = —0.4s + 0.01ur
uy=14+avy=16—-a,r,=14+a,s =16 — «a 9)

We solve (9) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1.At a-level =
0, the solution graphs are figure (3.1.11) and figure (3.1.12):
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Figure (3.1.11): The solution of (9) at a=0 for short time period

The lower and upper bounds of x(t) start with different points, similarly for y(t).
and u(t) > v(t) for t < 15. As time increases, the solution of lower and upper
bounds of x(t) and y(t) become identical as in the figure (3.1.12)

[

Figure (3.1.12): The solution“of(9) at 0.=0 as time increases

At a-level = 0.5, the solution is figure (3.1.13) and figure (3.1.14):

Figure (3.1.13): The solution ofu(9) at o=0.5 for short time period
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Figure (3.1.14): The solution ‘Zf(9) at a=0.5 as time increases

For t < 15,u(t) > v(t) and as time increases the lower and upper bound of
x(t) and y(t) become identical.

At a-level = 1, the solution is table (3.1.7) and figure (3.1.15):

Table (3.1.7): The solution of (6) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 | 15.0000 | 15.0000 | 15.0000 | 15.0000
5.0000 | 74.3290 | 74.3290 | 65.9610 | 65.9610

10.0000 | 8.6870 8.6870 | 20.3800 | 20.3800
15.0000 | 125.5500 | 125.5500 | 30.9900 | 30.9900
20.0000 | 6.2827 6.2827 | 29.2910 | 29.2910
25.0000 | 81.9850 | 81.9850 | 14.2220 | 14.2220
30.0000 | 6.7937 6.7937 | 43.3010 | 43.3010
35.0000 | 39.1410 | 39.1410 | 11.4180 | 11.4180
40.0000 | 13.1750 | 13.1750 | 62.1540 | 62.1540
45.0000 | 18.3480 | 18.3480 | 13.1480 | 13.1480
50.0000 | 48.1690 | 48.1690 | 73.3960 | 73.3960
55.0000 | 9.5843 9.5843 [ 17.9990 | 17.9990
60.0000 | 126.3700 | 126.3700 | 40.5810 | 40.5810
65.0000 | 6.2694 6.2694 | 26.4420 | 26.4420
70.0000 | 95.1240 | 95.1240 | 15.6750 | 15.6750
75.0000 | 6.0738 6.0738 | 40.0000 | 40.0000
80.0000 | 44.4160 | 44.4160 | 11.1530 | 11.1530
85.0000 | 10.8280 | 10.8280 | 59.3380 | 59.3380
90.0000 | 19.6920 | 19.6920 | 12.4410 | 12.4410
95.0000 | 39.9810 | 39.9810 | 74.8640 | 74.8640
100.0000 | 9.5716 9.5716 | 17.0560 | 17.0560
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From previous graphs, we note that when we assume x(t) and y(t) are (2)-
differentiable at any a< 1, the lower and upper bounds of x(t) and y(t) become
identical as time increases and oscillate about the equilibrium point x40,33.33)- SO
this point is fuzzy stable. However, when a= 1 the solution is equivalent to the

solution of the crisp case.

In figures (3.1.16) and (3.1.17), we plot the crisp solution with the solution of the
fuzzy model (9) at a=0.

X(t), Y

Figure (3.1.16): The solution of (9) at a=0 with the crisp case for short time period
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Figure (3.1.17): The solution of (9) at a=0 with the crisp case for long time period

From figures (3.1.16) and (3.1.17) we can note that for short time period, the
solution of x(t) lies between the solution of u(t) and v(t) then as time increases
they become identical (x(t) = u(t) = v(t)). Also, the solution of y(t) lies
between the solution of r(t) and s(t) and as time increases they become identical
(@) =r() = s(t)).

The model (5) was presented in [2] and they obtained fuzzy unstable equilibrium
point by Euler method. However, we discuss this model and solve it using Runge-
Kutta method. Thereafter, we conclude that when x(t) and y(t) are (1,1), (1,2) and
(2,1)-differentiable there is some negative values for a < 1, there is no meaning in
this solution since it models population. At @ = 1, the core of the solution is the
same as the solution of the crisp case, so it’s stable. While, when x (t) and y(t)
are (2)-differentiable, the curves of x (t) and y(t) become identical as t - oo and
the crisp solution lies between them. So, there is a fuzzy solution as t — oo,which
Is periodic about the equilibrium point. As prey population increases the predator
population is minimum and as prey population decreases the predator population is
maximum. So this solution is acceptable biologically and fuzzy stable. Therefore,
the form (2)-differentiable for x (t) and y(t) gives solution better than the other

forms.

Case 2: we try to change the initial conditions of (5) to be close to the equilibrium
point (40,33.33). So, we let x, = 41 and y, = 32. Then we obtain the following
model:
x'(t) =x —0.03xy
y'(t) =—-04y+0.01lxy
X, =41, y, =32 (10)
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We solve (10) by Matlab using Runge-Kutta method. The solution for model (10)
Is given in table (3.1.8) and figure (3.1.18).

Table (3.1.8): The solution of (10)
Time x(t) y(t)
0.0000 | 41.0000 | 32.0000
5.0000 | 38.8050 | 34.6630
10.0000 | 41.1660 | 32.0120
15.0000 | 38.6660 | 34.6370
20.0000 | 41.3210 | 32.0240
25.0000 | 38.5340 | 34.6150
30.0000 | 41.4580 | 32.0470
35.0000 | 38.4080 | 34.5940
40.0000 | 41.5870 | 32.0750
45.0000 | 38.2620 | 34.5680
50.0000 | 41.7460 | 32.1090
55.0000 | 38.0930 | 34.5230
60.0000 | 41.9130 | 32.1430
65.0000 | 37.9500 | 34.4690
70.0000 | 42.0640 | 32.1820
75.0000 | 37.8430 | 34.4200
80.0000 | 42.1900 | 32.2310
85.0000 | 37.7260 | 34.3760
90.0000 | 42.3130 | 32.2810
95.0000 | 37.5910 | 34.3240
100.0000 | 42.4600 | 32.3350

Figure (3.1.18): The solution of (10)

From table (3.1.8) and figure (3.1.18) we can notice that the crisp solution of
x(t) and y(t) are periodic about the equilibrium point x43333). SO, this
interesting point is stable.
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Here, we convert model (10) to a fuzzy model by assuming the initial conditions
triangular  fuzzy  numbers. Let [xy], = 1[40+ @,42 — a] and [y,], =
[31 + a,33 — a]. Then we solve the fuzzy model in the same manner as we did
with the previous conditions. We assume that x (t) and y(t) are (1)-differentiable,
then we have the following model:
u =u—0.03vs
v' =v—0.03ur
r'=—0.4s + 0.01ur
s'=—0.4r + 0.01vs
Uy =40+ a,vy=42—-a,ry =314+ a,5) =33 —« (11)
Thereafter, we solve (11) by Runge-Kutta method in Matlab at a-level= 0,0.5,1.
At a-level = 0, the solution is table (3.1.9), where its graph is figure (3.1.19):

Table (3.1.9): The solution of (11) at =0

Time u(t) v(t) r(t) s(t)
0.0000 40.0000 42.0000 31.0000 | 33.0000
0.2500 39.2930 43.4760 30.7440 | 33.4560
0.5000 37.6510 45.7710 30.3120 | 34.1630
0.7500 34.3430 49.5090 29.5550 | 35.2840
1.0000 28.0270 55.7500 28.2260 | 37.1200
1.2500 16.1910 66.2400 25.9210 | 40.2420
1.5000 -6.1148 83.6090 22.0390 | 45.7790
1.7500 -48.9800 111.1900 15.8470 | 56.0550
2.0000 -134.5100 150.7900 6.9865 76.1760
2.2500 -311.5300 196.1300 -3.0815 | 117.3000
2.5000 -677.3000 223.1400 -9.7960 | 200.4900
2.7500 -1356.7000 198.9900 -10.5090 | 345.7300
3.0000 -2316.3000 104.4900 -9.1427 | 514.4800
3.2500 | -3112.7000 -59.4850 -7.3671 551.350
3.5000 | -3405.3000 | -248.8000 -4.7514 | 375.1800
3.7500 | -3640.0000 | -419.9700 -2.0296 | 162.0200
4.0000 | -4272.8000 | -577.9300 -0.5146 46.6020
4.2500 | -5354.2000 | -751.9100 -0.0791 8.9054
4.5000 | -6847.1000 | -967.0900 -0.0073 1.0506
4.7500 | -8788.4000 | -1241.9000 | -0.0004 0.0674
5.0000 | -11284.0000 | -1594.7000 | 0.0000 0.0020
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Figure (3.1.19): The solution of (11) at a=0

At a-level = 0.5, the solution graph is figure (3.1.20) in the appendix. At a-level =
1, the solution is table (3.1.10) and figure (3.1.21):

Table (3.1.10): The solution of (11

) at =1

Time

u(t)

v(t)

r(t)

s(t)

0.0000

41.0000

41.0000

32.0000

32.0000

5.0000

38.8050

38.8050

34.6630

34.6630

10.0000

41.1660

41.1660

32.0120

32.0120

15.0000

38.6660

38.6660

34.6370

34.6370

20.0000

41.3210

41.3210

32.0240

32.0240

25.0000

38.5340

38.5340

34.6150

34.6150

30.0000

41.4580

41.4580

32.0470

32.0470

35.0000

38.4080

38.4080

34.5940

34.5940

40.0000

41.5870

41.5870

32.0750

32.0750

45.0000

38.2620

38.2620

34.5680

34.5680

50.0000

41.7460

41.7460

32.1090

32.1090

55.0000

38.0930

38.0930

34.5230

34.5230

60.0000

41.9130

41.9130

32.1430

32.1430

65.0000

37.9500

37.9500

34.4690

34.4690

70.0000

42.0640

42.0640

32.1820

32.1820

75.0000

37.8430

37.8430

34.4200

34.4200

80.0000

42.1900

42.1900

32.2310

32.2310

85.0000

37.7260

37.7260

34.3760

34.3760

90.0000

42.3130

42.3130

32.2810

32.2810

95.0000

37.5910

37.5910

34.3240

34.3240

100.0000

42.4600

42.4600

32.3350

32.3350
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Figure (3.1.21): The solution of (11) at a=1

If x(t) is (1)-differentiable and y(t) is (2)-differentiable, then the model becomes:
u' =u—0.03vs
v' =v—0.03ur
r'=—0.4r + 0.01vs
s' = —0.4s + 0.01ur
Uug =40+ a,vg =42 —a, 1y =31+ a,so =33 —« (12)

We solve (12) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1. At a-level=
0, the solution is figure (3.1.22) as follow:

Y.
-

///

Figure (3.1.22): The solution of (12) at o=0

At a-level = 0.5, the solution figure (3.1.23) in the appendix. At a-level = 1, the
solution is figure (3.1.24):

29



Figure (3.1.24): The solution of (12) at a=1

If x(t) is (2)-differentiable and y(t) is (1)-differentiable, then the model becomes:
u' =v—0.03ur
v' =u—0.03vs
r'=—0.4s+ 0.01lur
s'=—0.4r + 0.01vs

Uy =40+ a,vy=42—-a,1,=314+a,5 =33 —« (13)

We solve (13) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1. At a-level =
0, the solution is figure (3.1.25):

Figure (3.1.25): The solution of (13) at a=0

At a-level = 0.5, the solution is figure (3.1.26) in the appendix. At a-level = 1, the
solution is figure (3.1.27):
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Figure (3.1.27): The solution of (13) at a=1

Now, If x(t) and y(t)are (2)-differentiable, then the model becomes:
u' =v—0.03ur
v'=u—0.03vs
r'=—0.4r + 0.01vs
s’ =—0.4s + 0.01ur
Uuy=40+a,vy=42—-a,1,=31+a,5 =33 —« (14)
We solve (14) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1. At a-level =
0, the solution graphs are figure (3.1.28) and figure (3.1.29):

Xf0, Y0

Figure (3.1.28): The solution of (14) at a=0 for short time period
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Figure (3.1.29): The Solution“llbf(14) at =0 as time increases

At o= 0.5, the solution graphs are figure (3.1.30) and figure (3.1.31) in the
appendix. At o = 1, the solution is figure (3.1.32):

Figure (3.1.32): The solution of (14) at a=1

When we change the initial conditions to be close to the equilibrium point, we
obtain the same results when x(t) and y(t) are (1,1), (1,2) and (2,1)-differentiable
as in case 1. While, when x (t) and y(t) are (2)-differentiable , at any a« <1 we
note that u(t) > v(t) and r(t) > s(t) at some time intervals. So, there are no
fuzzy solution for x (t) and y(t)but the solution is periodic about the equilibrium
point and stable. At « = 1, the solution is corresponding to the crisp solution and
the interesting equilibrium point is stable. So, we can’t say that the (2)-
differentiable for x (t) and y(t)with these initial conditions give good solution.

Case 3: we try to change the a — level of the initial conditions in model (5) using
shaped triangular fuzzy number. Let [X,], = [14 + a?, 16 — a?] = [Y,],. Then
we find the simulations and graphical solutions of the fuzzy predator prey model at
different « — level by matlab using Runge-Kutta method. First, if x(t) and y(t)
are (1)-differentiable then we obtain the following model:
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u =u—0.03vs
v/ =v—0.03ur
r' = —0.4s + 0.01ur
s'=—0.4r + 0.01vs

Uy =14+ a?,vy= 16 —a?,ry =14+ a?, sy = 16 — a?

(15)

At a-level = 0, the solution is table (3.1.11), where its graph is figure (3.1.33):

Table (3.1.11): The solution of (15) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 15.6670 18.8470 12.9330 15.3330
0.5000 17.4820 22.4480 11.9390 14.8660
0.7500 19.3670 27.0260 10.9950 14.6260
1.0000 21.1660 32.8840 10.0660 14.6640
1.2500 22.5880 40.4310 9.1092 15.0580
1.5000 23.0900 50.2310 8.0569 15.9430
1.7500 21.6840 63.0540 6.8114 17.5500
2.0000 16.5030 79.9390 5.2282 20.2980
2.2500 3.9817 102.2200 3.1076 24.9730
2.5000 -23.1180 131.3100 0.2211 33.1750
2.7500 -80.1550 167.8400 | -3.5389 48.3320
3.0000 -200.9900 | 209.0000 | -7.7090 78.0940
3.2500 -459.9900 | 243.2800 | -10.6750 | 139.1800
3.5000 -996.8000 | 248.0600 | -10.8600 | 261.0600
3.7500 | -1958.0000 | 194.5500 | -9.6853 462.4400
4.0000 | -3141.1000 | 54.2850 -8.4039 644.4900
4.2500 | -3811.0000 | -154.5100 | -6.3015 573.3500
4.5000 | -3961.8000 | -360.5600 | -3.3223 299.5300
4.7500 | -4387.0000 | -535.9000 | -1.0252 97.3430
5.0000 | -5364.7000 | -709.0500 | -0.1807 20.6270

S =
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Figure (3.1.33): The solution of (15) at a=0
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At a-level = 0.5, the solution is figure (3.1.34) in the appendix
solution is table (3.1.12) and figure (3.1.35):

Table (3.1.12): The solution of (15) at a=1

. At a-level = 1, the

Time u(t) v(t) r(t) s(t)
0.0000 | 15.0000 | 15.0000 | 15.0000 | 15.0000
5.0000 | 74.3290 | 74.3290 | 65.9610 | 65.9610

10.0000 | 8.6870 8.6870 | 20.3800 | 20.3800
15.0000 | 125.5500 | 125.5500 | 30.9900 | 30.9900
20.0000 6.2827 6.2827 | 29.2910 | 29.2910
25.0000 | 81.9850 | 81.9850 | 14.2220 | 14.2220
30.0000 | 6.7937 6.7937 | 43.3010 | 43.3010
35.0000 | 39.1410 | 39.1410 | 11.4180 | 11.4180
40.0000 | 13.1750 | 13.1750 | 62.1540 | 62.1540
45.0000 | 18.3480 | 18.3480 | 13.1480 | 13.1480
50.0000 | 48.1690 | 48.1690 | 73.3960 | 73.3960
55.0000 | 9.5843 9.5843 | 17.9990 | 17.9990
60.0000 | 126.3700 | 126.3700 | 40.5810 | 40.5810
65.0000 | 6.2694 6.2694 | 26.4420 | 26.4420
70.0000 | 95.1240 | 95.1240 | 15.6750 | 15.6750
75.0000 | 6.0738 6.0738 | 40.0000 | 40.0000
80.0000 | 44.4160 | 44.4160 | 11.1530 | 11.1530
85.0000 | 10.8280 | 10.8280 | 59.3380 | 59.3380
90.0000 | 19.6920 | 19.6920 | 12.4410 | 12.4410
95.0000 | 39.9810 | 39.9810 | 74.8640 | 74.8640
100.0000 | 9.5716 9.5716 | 17.0560 | 17.0560

Figure (3.1.35): The solution of (15) at a=1

u' =u—0.03vs
v =v—0.03ur

r' =

—0.4r + 0.01vs

If x(t) is (1)-differentiable and y(t) is (2)-differentiable, then the model becomes:
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s'=—-0.4s+ 0.01ur
Uy = 14+ a®,vy =16 —a?,ry = 14+ a?,s, = 16 — a?
At a-level = 0, the solution is figure (3.1.36)

Figure (3.1.36): The solution of (16) at a=0

(16)

At a-level = 0.5, the solution is figure (3.1.37) in the appendix. At a-level = 1, the

solution is figure (3.1.38):
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Figure (3.1.38): The solution of (16) at o=1

While x(t) is (2)-differentiable and y(t) is (1)-differentiable, then the model

becomes:
u' =v—0.03ur

v' =u—0.03vs
r' = —0.4s + 0.01ur
s'"=—-04r+0.01vs

Uy = 14+ a?,vy =16 —a?, 1y = 14 + a?,5, = 16 — a?

At a-level = 0, the solution is figure (3.1.39)

(17)
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Figure (3.1.39): The solution of (17) at a=0

At a-level = 0.5, the solution is figure (3.1.40) in the appendix. At a-level = 1, the
solution is figure (3.1.41):

Figure (3.1.41): The solution of (17) at a=1

Now, If x(t) and y(t) are (2)-differentiable, then the model becomes:
u' =v—0.03ur
v' ' =u—0.03vs
r'=—0.4r + 0.01vs
s' = —0.4s + 0.01ur
Uy = 14+ a?,vy = 16 — a?,1ry = 14 + a?,sy = 16 — a? (18)

At a-level = 0, the solution is figure (3.1.42) and figure (3.1.43):
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Figure (3.1.42): The solution 0}?(18) at a=0 for short time period

—v
—r
s

Figure (3.1.43): The solution of (18) at a=0 as time increases

At a-level = 0.5, the solution graphs are figure (3.1.44) and figure (3.1.45) in the
appendix. At a-level =1, the solution is figure (3.1.46):

X))

Figure (3.1.46): The solution of (18) at a=1
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From previous tables and figures we can note that for case 3 we obtain the same
results as in case 1. So, there is a fuzzy solution which is periodic about the
equilibrium point only when x(t) and y(t) are (2)-differentiable. Thus this
equilibrium point is stable.

Case 4: We try to use trapezoidal fuzzy initial conditions. Therefore, we Let x, =
(14 ,14.5,15.5,16) = y, trapezoidal fuzzy numbers and there a — levels will be
as follow: [xo]e = [14+5, 16 = 5| = [yola.
Then if x(t) and y(t) are (1)-differentiable the fuzzy model will be as follows:
u' =u—0.03vs
v' =v—0.03ur
r'=—0.4s + 0.01ur
s'=—0.4r + 0.01vs

up=14+7,00=16 2,19 = 14+ 2,5 = 16 — - (19)
And we solve (19) by Runge-Kutta method in Matlab at different a-level. At a-
level = 0, the solution is table (3.1.13), where its graph is figure (3.1.47):

Table (3.1.13): The solution of (19) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 15.6670 18.8470 12.9330 15.3330
0.5000 17.4820 22.4480 11.9390 14.8660
0.7500 19.3670 27.0260 10.9950 14.6260
1.0000 21.1660 32.8840 10.0660 14.6640
1.2500 22.5880 40.4310 9.1092 15.0580
1.5000 23.0900 50.2310 8.0569 15.9430
1.7500 21.6840 63.0540 6.8114 17.5500
2.0000 16.5030 79.9390 5.2282 20.2980
2.2500 3.9817 102.2200 3.1076 24.9730
2.5000 -23.1180 | 131.3100 0.2211 33.1750
2.7500 -80.1550 | 167.8400 | -3.5389 48.3320
3.0000 -200.9900 | 209.0000 | -7.7090 78.0940
3.2500 -459.9900 | 243.2800 | -10.6750 | 139.1800
3.5000 -996.8000 | 248.0600 | -10.8600 | 261.0600
3.7500 | -1958.0000 | 194.5500 | -9.6853 | 462.4400
4.0000 | -3141.1000 | 54.2850 -8.4039 | 644.4900
4.2500 | -3811.0000 | -154.5100 | -6.3015 | 573.3500
4.5000 -3961.8000 | -360.5600 | -3.3223 299.5300
4.7500 -4387.0000 | -535.9000 | -1.0252 97.3430
5.0000 -5364.7000 | -709.0500 | -0.1807 20.6270
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Figure (3.1.47): The solution of (19) at o=0

At a-level = 0.5, the solution is figure (3.1.48) in the appendix. At a-level = 1, the
solution is table (3.1.14), where its graph is figure (3.1.49):

Table (3.1.14): The solution of (19) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 14.5000 15.5000 14.5000 15.5000
0.2500 16.4710 18.0610 13.5310 14.7310
0.5000 18.7500 21.2330 12.6640 14.1270
0.7500 21.3450 25.1750 11.8880 13.7040
1.0000 24.2330 30.0930 11.1860 13.4850
1.2500 27.3340 36.2610 10.5380 13.5130
1.5000 30.4630 44.0450 9.9108 13.8570
1.7500 33.2370 53.9510 9.2550 14.6320
2.0000 34.8990 66.6840 8.4874 16.0400
2.2500 33.9750 83.2450 7.4694 18.4430
2.5000 27.4970 105.0500 5.9723 22.5400
2.7500 9.3367 134.0200 3.6428 29.7540
3.0000 -34.1760 | 172.1200 0.0506 43.2790
3.2500 -135.3600 | 219.2200 | -4.9244 70.7630
3.5000 -373.4000 | 265.9300 | -9.8945 131.0700
3.7500 -924.6000 | 284.0100 | -11.6260 | 264.8900
4.0000 | -2032.8000 | 232.6300 | -10.4330 | 516.5400
4.2500 -3501.1000 | 71.1710 -9.0457 775.6500
4.5000 -4214.1000 | -178.8300 -6.7784 684.2800
4.7500 -4177.2000 | -415.8800 -3.4036 322.2900
5.0000 -4553.8000 | -608.5800 -0.9155 89.1400
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Figure (3.1.49): The solution of (19) at a=1

While x(t) is (1)-differentiable and y(t) is (2)-differentiable, then the model
becomes:
u' =u—0.03vs
v' =v—0.03ur
r'=—0.4r + 0.01vs
s' =—0.4s + 0.01ur
U =14+45,1=16—-,1=14+-,5 =16 — (20)
We solve (20) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1. At a-level =
0, the solution is figure (3.1.50)

Figure (3.1.50): The solution of (20) at a=0

At a-level = 0.5, the solution is figure (3.1.51) in the appendix. At a-level = 1, the
solution is figure (3.1.52):
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Figure (3.1.52): The solution of (20) at a=1

However, If x(t) is (2)-differentiable and y(t) is (1)- differentiable, then the
model becomes:
u' =v—0.03ur
v' =u—0.03vs
r'=—0.4s + 0.01ur
s'=—0.4r + 0.01vs
U =14+45,1=16—-,1=14+-,5 =16 — (21)
We solve (21) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1. At a-level =
0, the solution is figure (3.1.53)

X, Yt
o

Figure (3.1.53): Themgolution of (21) at a=0

At a-level = 0.5, the solution is figure (3.1.54) in the appendix. At a-level = 1, the
solution is figure (3.1.55):
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Figure (3.1.55): The solution of (21) at a=1I

Now, If x(t) and y(t) are (2)-differentiable, then we obtain the following model:
u' =v—0.03ur
v'=u—0.03vs
r'=—0.4r + 0.01vs
s' = —0.4s + 0.01ur
U =14+4°,1=16—",1=14+-,5 =16 — (22)
We solve (22) by Runge-Kutta method in Matlab at a-levels= 0,0.5,1. At a-level =
0, the solution graphs are figure (3.1.56) and figure (3.1.57):

A

Figure (3.1.56): The solution of (22) at a=0 for short time period
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X, Y

Figure (3.1.57): The solution of (22) at =0 as time increases

At o-level = 0.5, the solution graphs are figure (3.1.58) and figure (3.1.59) in the
appendix. At a-level = 1, the solution graphs are figure (3.1.60) and figure

(3.1.61):

Figure (3.1.60): The solution of (22) at a=1 for short time period

X@®. Y

Tims

Figure (3.1.61): The solution of (22) at a=1 as time increases
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For case 4, when x(t) and y(t) are (1,1), (1,2) and (2,1)-differentiable then the
solution is incompatible with biological facts. At @ = 1, since uy # v, and ry #
S, the solution isn’t coincide with the crisp solution and the equilibrium points are
fuzzy unstable. When x(t) and y(t) are (2)-differentiable then there is a fuzzy
solution expect at small time interval at beginning, and as time increases the
solution becomes periodic about the equilibrium point. So, the equilibrium point is
fuzzy stable. While at a« =1, Since uy # vy, and ry # sy, the solution isn’t
coincide with the crisp solution for short time period. Therefore, the triangular
fuzzy initial condition is better than the trapezoidal one at least for « = 1.

3.2: A Predator-Prey Model with Fuzzy Parameters and Initial
Conditions.

In this section, we try to make the birth and death rates (parameters) of model (5)
fuzzy numbers with fuzzy initial conditions. First, we want to fuzzify each
parameter separately using a triangular fuzzy number and again using a trapezoidal
fuzzy number.

Here we fuzzify a = 1. First, we let a = (0.5,1,1.5) triangular fuzzy number. So,
[a], = [0.5 + % 1.5 — %] and we obtain the following model:
x'(t) =(0.5,1,1.5)x — 0.03xy
y'(t) = —0.4y+ 0.01xy

With fuzzy initial conditions:
[%0le = [14 + a,16 — a], [yo]o = [14 + @, 16 — @]

If x(t) and y(t)are (1)-differentiable, then the model will be:
;L a
u = (0.5 + E) u—0.03vs

v = (15— %)v — 0.03ur
r'=—0.4s + 0.01lur
s'=—-0.4r + 0.01vs
Uuy=14+avy=16—-a,1r,=14+a,5 =16 — « (23)
This model will change at any value of a, so the equilibrium points will also
change as a changes. The first equilibrium point is (0,0,0,0) for any o —level. The
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second equilibrium point varies according to the a—level, as in the following table

(3.2.1)
Table (3.2.1): The equilibrium points of (23)
a- level u v r s
0 57.69 27.7345 | 24.0375 | 34.6681
0.5 47.4252 | 33.7373 29.64 35.14
1 40 40 33.3333 | 33.3333

We solve (23) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is table (3.2.2), where its graph is figure (3.2.1):

Table (3.2.2): The solution of (23) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 13.5440 21.5820 12.8980 15.3830
0.5000 12.2620 29.9330 11.7780 15.1180
0.7500 9.5687 42.4120 10.5690 15.3580
1.0000 44171 61.0320 9.1713 16.3890
1.2500 -5.3118 88.7600 7.4323 18.8000
1.5000 -24.1360 129.8800 5.1219 23.8740
1.7500 -63.7690 190.2300 1.9065 34.9990
2.0000 -158.7600 276.3900 -2.5971 62.3590
2.2500 -433.9500 388.6900 -8.1709 143.3600
2.5000 -1413.1000 489.0700 -11.9510 436.7100
2.7500 -4788.7000 411.9600 -12.1050 | 1446.0000
3.0000 -8079.6000 -138.7100 -11.2450 | 2252.8000
3.2500 -4134.1000 -781.0800 -7.1838 677.9500
3.5000 -2646.1000 | -1262.7000 -1.3098 52.6510
3.7500 -2828.8000 | -1848.1000 -0.0408 1.1271
4.0000 -3201.8000 | -2689.2000 -0.0002 0.0042
4.2500 -3628.1000 | -3912.7000 0.0000 0.0000
4.5000 -4111.1000 | -5692.9000 0.0000 0.0000
4.7500 -4658.5000 | -8283.2000 0.0000 0.0000
5.0000 -5278.8000 | -12052.0000 0.0000 0.0000
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Figure (3.2.1): The solution of (23) at a=0

At a-level = 0.5, the solution is figure (3.2.2) in the appendix
solution is table (3.2.3), where its graph is figure (3.2.3):

Table (3.2.3): The solution of (23) at a=1

. At ao-level = 1, the

Time u(t) v(t) r(t) s(t)
0.0000 15.0000 | 15.0000 | 15.0000 | 15.0000
5.0000 74.3290 | 74.3290 | 65.9610 | 65.9610
10.0000 8.6870 8.6870 | 20.3800 | 20.3800
15.0000 | 125.5500 | 125.5500 | 30.9900 | 30.9900
20.0000 6.2827 6.2827 | 29.2910 | 29.2910
25.0000 | 81.9850 | 81.9850 | 14.2220 | 14.2220
30.0000 6.7937 6.7937 | 43.3010 | 43.3010
35.0000 | 39.1410 | 39.1410 | 11.4180 | 11.4180
40.0000 | 13.1750 | 13.1750 | 62.1540 | 62.1540
45.0000 | 18.3480 | 18.3480 | 13.1480 | 13.1480
50.0000 | 48.1690 | 48.1690 | 73.3960 | 73.3960
55.0000 9.5843 9.5843 | 17.9990 | 17.9990
60.0000 | 126.3700 | 126.3700 | 40.5810 | 40.5810
65.0000 6.2694 6.2694 | 26.4420 | 26.4420
70.0000 | 95.1240 | 95.1240 | 15.6750 | 15.6750
75.0000 6.0738 6.0738 | 40.0000 | 40.0000
80.0000 | 44.4160 | 44.4160 | 11.1530 | 11.1530
85.0000 | 10.8280 | 10.8280 | 59.3380 | 59.3380
90.0000 | 19.6920 | 19.6920 | 12.4410 | 12.4410
95.0000 | 39.9810 | 39.9810 | 74.8640 | 74.8640

100.0000 | 9.5716 9.5716 | 17.0560 | 17.0560
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Figure (3.2.3): The solution of (23) at a=1

Whereas if x(t) is (1)-differentiable and y(t) is (2)-differentiable, then the model
will be:

a
u' = (0.5+ E)u — 0.03vs

a
v =(15- E)v — 0.03ur

r' =—0.4r + 0.01vs
s' = —0.4s + 0.01ur
Uu=l4+avy=16—-arn=14+a,s) =16 —« (24)
We solve (24) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.4):

Figure (3.2.4): The solution of (24) at a=0

At a-level = 0.5, the solution is figure (3.2.5) in the appendix. At a-level =1, the
solution is figure (3.2.6):
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Figure (3.2.6): The solution of (24) at a=1

If x(t) is (2)-differentiable and y(t) is (1)-differentiable, then the model will be:
u' = (15— %)v — 0.03ur

a

v’ =(0.5+ E)u — 0.03vs
r' = —0.4s + 0.01ur
s'=—=0.4r + 0.01vs

With the initial conditions:
Uuy=14+avy=16—-a,1r,=14+a,5i =16 — « (25)

We solve (25) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.7).

=

Figure (3.2.7): The solution of (25) at a=0

At a-level = 0.5, the solution is figure (3.2.8) in the appendix. At a-level =1, the
solution is figure (3.2.9):
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X Y

Figure (3.2.9): The solution of (25) at a=1

If x(t) and y(t) are (2)-differentiable, then the model will be:
u' = (15— %)v — 0.03ur

a
v' = (0.5+ E)u — 0.03vs

r'=—0.4r + 0.01vs
s' = —0.4s + 0.01ur
Uy=l4d+avy=16—-ar=14+a,sp =16 -« (26)
We solve (26) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution graphs are figure (3.2.10), figure (3.2.11) and figure (3.2.12):

Figure (3.2.10): The solution O¥l(26) at a=0 for short time period
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Figures (3.2.11) and (3.2.12): The sglution of (26) at a=0 as time increases

Ata=0,ast - oo, u(t) » 57.69,v(t) - 27.73,r(t) = 24.04, s(t) - 34.67.
So, the solution is asymptotically stable for y(t) but there is no fuzzy solution for
x(t) since u(t) > v(t).

At a-level = 0.5, the solution graphs are figure (3.2.13), figure (3.2.14) and figure
(3.2.15) in the appendix. At a-level =1, the solution is figure (3.2.16):

XY

Figure (3.2.16): The solution of (26) at a=1

At o= 1, the solution is similar to the crisp solution and it is stable solution.
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Second, we let a = (0.25,0.5,1.5,1.75) trapezoidal fuzzy number. So, [a],
[0.25 +7, 175 — %] and we obtain the following model:

x'(t) = (0.25,0.5,1.5,1.75)x — 0.03xy
y'(t) =—-04y+ 0.01xy
With fuzzy initial conditions:

[X0]a =

[14 + a,16 — a], [yola = [14 + @, 16 — ]

If x(t) and y(t) are (1)-differentiable, then the model will be:
u' = (0.25+ %)u — 0.03vs

a
v' = (175 — Z)v — 0.03ur

r' = —0.4s + 0.01ur
—0.4r + 0.01vs

s’ =

Uuy=14+avy=16—a,1rp, =14+ a,s) =16 — « (27)
The model will change at any value of a, so the equilibrium points will also change
as a changes. The first equilibrium point is (0,0,0,0) for any o —level. The second

equilibrium point varies according to the a—level, as in the following table (3.2.4).

Table (3.2.4): The equilibrium points of (27)

a- level u v T s
0 76.5172 20.9103 15.9411 30.4942
0.5 65.213 24.535 20.3791 33.2245
1 57.69 27.7345 24.0375 34.6681

We solve (27) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =

0, the solution is table (3.2.5) and its graph is figure (3.2.17):

Table (3.2.5): The solution of (27) at o=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 12.5720 23.0810 12.8820 15.4100
0.5000 10.0430 34.4060 11.7050 15.2610
0.7500 5.5735 52.4330 10.3810 15.8120
1.0000 -2.4648 80.9900 8.7757 17.5710
1.2500 -18.0330 126.0700 6.6624 21.7880
1.5000 -51.3560 196.7600 3.6563 31.6960
1.7500 -138.0100 305.8100 -0.8783 58.6080
2.0000 -434.1300 463.5800 -7.4426 152.4400
2.2500 -1849.9000 624.7200 -12.6950 605.5700
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2.5000 -8392.3000 451.4500 -12.8500 | 2694.3000
2.7500 -8817.7000 -550.5700 -11.9730 | 2616.9000
3.0000 -1938.6000 -1335.8000 -6.4648 229.6600
3.2500 -1351.0000 -2116.9000 -0.7328 3.2733
3.5000 -1427.7000 -3281.8000 -0.0267 0.0049
3.7500 -1519.8000 -5083.1000 -0.0007 0.0000
4.0000 -1617.8000 -7872.9000 0.0000 0.0000
4.2500 -1722.1000 | -12194.0000 0.0000 0.0000
4.5000 -1833.2000 | -18886.0000 0.0000 0.0000
4.7500 -1951.4000 | -29251.0000 0.0000 0.0000
5.0000 -2077.3000 | -45305.0000 0.0000 0.0000

At a-level = 0.5, the solution is figure (3.2.18) in the appendix. At a-level = 1, the
solution is table (3.2.6) and graph is figure (3.2.19):

Table (3.2.6): The solution of (27) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 15.0000 15.0000 15.0000 15.0000
0.2500 14.9960 19.8320 14.0900 14.1740
0.5000 14.4340 27.0140 13.2070 13.6120
0.7500 12.9220 37.6960 12.2990 13.4140
1.0000 9.7830 53.5930 11.2870 13.7600
1.2500 3.7136 77.2630 10.0490 15.0080
1.5000 -7.9541 112.5000 8.3919 17.9100
1.7500 -31.7310 164.8200 5.9996 24.3420
2.0000 -85.7130 241.8100 2.3669 39.6230
2.2500 -232.6900 351.2100 -3.1089 82.5540
2.5000 -743.8900 484.9300 -9.6621 235.6000
2.7500 -2900.6000 545.8000 -12.2590 890.2000
3.0000 -8648.5000 191.6700 -11.9300 2572.4000
3.2500 -6566.2000 -607.9800 -9.5522 1519.8000
3.5000 -3021.6000 | -1168.6000 -2.8989 158.6000
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3.7500 -2917.0000 | -1729.9000 -0.1336 4.3821
4.0000 -3291.0000 | -2517.9000 -0.0010 0.0232
4.2500 -3729.1000 | -3663.5000 0.0000 0.0000
4.5000 -4225.6000 | -5330.3000 0.0000 0.0000
4.7500 -4788.3000 | -7755.6000 0.0000 0.0000
5.0000 -5425.8000 | -11284.0000 0.0000 0.0000

Figure (3.2.19): The solution of (27) at =1

If x(t) is (1)-differentiable and y(t) is (2)-differentiable, then the model will be:

Uug=1l4d+avg=16—-ary=14+a,so =16 — «a

a
u' = (0.25+ Z)u — 0.03vs

a
v’ = (175 — Z)v — 0.03ur

r' = —0.4r + 0.01vs
s' = —0.4s + 0.01ur

(28)

We solve (28) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.20):

X Y()

Figure (3.2.20): The solution of (28) at a=0
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At a-level = 0.5, the solution is figure (3.2.21) in the appendix. At a-level = 1, the
solution is figure (3.2.22):

Figure (3.2.22): The solution of (28) at a=1

Now, If x(t) is (2)-differentiable and y(t)is (1)-differentiable, then the model will
be:

a
u' = (1.75 — Z)v — 0.03ur

a
v' = (0.25+ Z)u — 0.03vs

r'=—0.4s 4+ 0.01lur
s'=—-0.4r + 0.01vs
Uuy=14+avy=16—-a,1r,=14+a,5 =16 — « (29)
We solve (29) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.23):

X(ty. ()

Figure (3.2.23): The solution of (29) at a=0

At a-level = 0.5, the solution is figure (3.2.24) in the appendix. At a-level =1, the
solution is figure (3.2.25):
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Figure (3.2.25): The solution of (29) at a=1

If x(t) and y(t) are (2)-differentiable, then the model will be:
u' = (1.75 — %)v — 0.03ur

a
v’ = (0.25+ Z)u — 0.03vs

r'=—0.4r + 0.01vs
s’ = —0.4s + 0.01ur
Uuy=1l4+avy=16—-a,ry =14+ a,s) =16 — « (30)

We solve (30) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution graphs are figure (3.2.26), figure (3.2.27) and figure (3.2.28):

=

Figure (3.2.26): The solution of (30) at a=0 for short time period
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Figures (3.2.27) and (3.2.28): The solution of (30) at a=0 as time increases

At a= 0, ast - oo, u(t) - 76.5,v(t) - 2092,r(t) - 1594 , s(t) -
30.49. So the solution is asymptotically stable.

At a-level = 0.5, the solution is figure (3.2.29) in the appendix. At a-level = 1, the
solution graphs are figure (3.2.30), figure (3.2.31) and figure (3.2.32):

(1), Y(t)

Figure (3.2.30): The solution 0f(30) at a=1 for short time period
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Figures (3.2.31) and (3.2.32): The solution of (30) at a=1 as time increases

At a-level = 1, the solution is asymptotically stable since ast — oo, u(t) —»
57.69,v(t) » 27.74,r(t) » 24.04 , s(t) - 34.67.

Firstly, we assume (a) a triangular fuzzy number then we note that when
x(t) and y(t) are (1,1), (1,2) and (2,1)-differentiable, we obtain unacceptable and
unstable solution, but at « = 1 the solution is the same as the solution of the crisp
case and it is stable. While, when x(t) and y(t) are (2)-differentiable, the solution
is asymptotically stable. However, we note that u(t) > v(t) fort —» oo, so there
is no fuzzy solution for x(t) but this solution is acceptable biologically. At a =
1 the solution is the same as the solution of the crisp case. Secondly, we assume
(a) a trapezoidal fuzzy number then we obtain the same results for all cases of
derivatives else at « = 1, we have a solution not similar to the crisp case. So, we
deduce that the triangular fuzzy number is better than the trapezoidal fuzzy
number. Therefore, we want to discover the solution for the model (5) with fuzzy
initial conditions when a is a triangular fuzzy number with small support and then
with large support. Thereafter, we compare between them. We choose form (2,2)-
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differentiable since we haven’t got a fuzzy solution for the rest forms of the
derivative.

We fuzzify a by a triangular fuzzy number with small support. So, we let a =

(0.9999,1,1.0001) with [a], = [0.9999+ ¢ 1.0001 — —2 ] Then we
10000 10000
have the following model:
I — a —
u' = (1.0001 106900)17 0.03ur
v = (09999 + m)u — 0.03vs

r'=—0.4r + 0.01vs
s' = —0.4s + 0.01ur
Uuy=1l4+avy=16—-ary=14+a,s=16—-«a (31)
We solve (31) by Runge-Kutta method in Matlab at a-level=0. The solution is table
(3.2.7), where its graph is figure (3.2.33):

Table (3.2.7): The solution of (31) at =0

Time u(t) v(t) r(t) s(t)
0.0000 | 14.0000 | 16.0000 | 14.0000 | 16.0000
5.0000 | 74.4350 | 74.3420 | 65.8540 | 65.9210

10.0000 | 8.8663 8.8636 | 20.4870 | 20.4970
15.0000 | 124.3000 | 124.2800 | 31.5100 | 31.5120
20.0000 6.5222 6.5213 | 29.1380 | 29.1400
25.0000 | 83.8760 | 83.8660 | 14.7660 | 14.7670
30.0000 | 6.9470 6.9459 | 42.2360 | 42.2390
35.0000 | 42.0810 | 42.0770 | 11.6830 | 11.6840
40.0000 | 12.2560 | 12.2550 | 60.0920 | 60.0970
45.0000 | 20.0960 | 20.0930 | 12.9540 | 12.9550
50.0000 | 40.8910 | 40.8840 | 73.2820 | 73.2870
55.0000 | 10.4940 | 10.4920 | 17.2980 | 17.2990
60.0000 | 118.7900 | 118.7700 | 46.5670 | 46.5700
65.0000 | 6.7008 6.6999 | 25.0360 | 25.0380
70.0000 | 104.0900 | 104.0800 | 17.8040 | 17.8050
75.0000 | 6.0236 6.0227 | 37.2960 | 37.2990
80.0000 | 51.6560 | 51.6500 | 11.4840 | 11.4840
85.0000 | 9.3957 9.3941 | 55.2940 | 55.2980
90.0000 | 23.3490 | 23.3460 | 12.0560 | 12.0570
95.0000 | 29.7430 | 29.7380 | 73.3640 | 73.3700
100.0000 | 11.3660 | 11.3640 | 15.9880 | 15.9900
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Figure (3.2.33): The solution of (31) at a=0

We try to understand the behavior of the solution for long time intervals. So, we
note that u(t) > v(t) as t — oo but the difference u(t) — v(t) ~0.0005.

Then, we fuzzify a by a triangular fuzzy number with large support. So, we let a =
(0.02,1,1.98) with [a], =[0.02 + 0.98a, 1.98 — 0.98a]. Then we have the
following model:

u' = (198 —0.98a)v — 0.03ur
v’ = (0.02 + 0.98a)u — 0.03vs
r'=—0.4r + 0.01lvs
s’ =—0.4s + 0.01ur
Uy=14+avy=16—-a,r,=14+a,5) =16 —« (32)
We solve (32) by Runge-Kutta method in Matlab at a-level=0. The solution is table
(3.2.8), where its graph is figure (3.2.34):

Table (3.2.8): The solution of (32) at a=0
Time u(t) v(t) r(t) s(t)
0.0000 | 14.0000 | 16.0000 | 14.0000 | 16.0000
50.0000 | 173.8800 | 6.5124 | 3.5855 | 18.3930
100.0000 | 181.0000 | 8.3602 | 3.0222 | 14.1360
150.0000 | 184.8100 | 8.6684 | 3.0637 | 14.1650
200.0000 | 185.1100 | 8.6557 | 3.0834 | 14.2590
250.0000 | 185.0600 | 8.6470 | 3.0845 | 14.2680
300.0000 | 185.0500 | 8.6449 | 3.0849 | 14.2640
350.0000 | 185.0600 | 8.6433 | 3.0857 | 14.2610
400.0000 | 185.0400 | 8.6462 | 3.0843 | 14.2660
450.0000 | 185.0400 | 8.6466 | 3.0841 | 14.2670
500.0000 | 185.0600 | 8.6427 | 3.0860 | 14.2600
550.0000 | 185.0400 | 8.6477 | 3.0835 | 14.2690
600.0000 | 185.0300 | 8.6485 | 3.0831 | 14.2700
650.0000 | 185.0400 | 8.6473 | 3.0837 | 14.2680
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700.0000 | 185.0400 | 8.6481 | 3.0834 | 14.2690
750.0000 | 185.0100 | 8.6527 | 3.0810 | 14.2780
800.0000 | 185.0400 | 8.6475 | 3.0836 | 14.2690
850.0000 | 185.0100 | 8.6536 | 3.0806 | 14.2790
900.0000 | 185.0600 | 8.6440 | 3.0854 | 14.2620
950.0000 | 185.0600 | 8.6426 | 3.0861 | 14.2600
1000.0000 | 185.0400 | 8.6473 | 3.0837 | 14.2680

Ya—

Figure (3.2.34): The solution of (32) at a=0

From previous table and graph we note that u(t) > v(t) ast — o with large
difference.

We compare between a triangular fuzzy number of small support with other of
large support, and we note that when the support is large the difference
between u(t) and v(t) is clear but when the support is small the difference
between u(t) and v(t) isn’t clear and close to the solution of the model with crisp
a. Therefore, as the support of the triangular fuzzy number is small and close to the
crisp number, the solution will be more periodic and closer to the crisp solution.

Finally, we try to discover the behavior of the solution of model (5) with fuzzy
initial conditions by assuming (a) a triangular fuzzy number with support such that
the distance between its endpoints and the core is unequal. Figure (3.2.35) and
figure (3.2.36) show the solution of model (5) with initial conditions [x,], =
[14 + a,16 — a] = [yy]l, When x(t)andy(t) are (2)-differentiable at a —
level = 0, for a = (0.2,1,1.2) and a = (0.95,1,1.8), respectively.

When a = (0.2,1,1.2), we get the following model:

x'(t) =(0.2,1,1.2)x — 0.03xy
y'(t) =—-04y+0.01lxy
[xo]la = [14 + a,16 — a] = [yola (33)
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When a = (0.95,1,1.8), we get the following model:

x'(t) = (0.95,1,1.8)x — 0.03xy
y'(t) = —0.4y+ 0.01xy
[Xo]la = [14 + @, 16 — a] = [yola (34)
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Figure (3.2.35): The solution of (33) at a=0 for x(t)and y(t) are (2)-
differentiable
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Figure (3.2.36): The solution of (34) at a=0 for x(t)and y(t) are (2)-
differentiable

From figures (3.2.35) and (3.2.36), we note that the solutions are asymptotically
stable. So, we conclude that for a fuzzy number a = (a4, a,, a;) whenever at least
one of the differences (a, — a,), (a, — a3) increased then the solution will be
asymptotically stable. And vice versa, when a, and a5 are closer to the core a,,
the solution is closer to the crisp case.
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Now, we try to fuzzify b = 0.03. Initially using triangular fuzzy number, we let
b = (0.01,0.03,0.05). So, [b],=[0.01+%,005—=| and we have the
following model:

x'(t) =x —(0.01,0.03,0.05)xy
y'(t) = —0.4y+ 0.01xy
With fuzzy initial conditions:
[xole = [14 + @, 16 — a] = [yola
If we consider x(t) and y(t) are (1)-differentiable, then the model will be:
a
u' =u—(0.05- Sa—o)vs
v ' =v—(0.01+ %)ur
r'=—0.4s+ 0.01lur

s'=—04r+0.01vs
u=l4+avy=16—-a,r=14+a,so =16 — (35)

The first equilibrium point of (35) is (0,0,0,0) for any a —level. The second one
varies according to the a—level, as in the following table (3.2.9)

Table (3.2.9): The equilibrium points of (35)

a — level u v r S
0 68.399 23.3921 34.1995 58.4804
0.5 50.3968 31.748 31.498 39.685
1 40 40 33.3333 33.3333

Table (3.2.1): The solution of (35) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 14.0100 20.0060 12.9070 15.3560
0.5000 13.1760 25.2070 11.8160 14.9700
0.7500 10.9280 31.9730 10.6690 14.9050
1.0000 6.3389 40.7970 9.3889 15.2620
1.2500 -2.1152 52.3140 7.8782 16.2140
1.5000 -17.0440 67.3380 6.0241 18.0560
1.7500 -43.0430 86.8490 3.7276 21.3220

we solve (35) by Runge-Kutta method in Matlab at a-level=0,0.5,1. At a-level =0,
the solution is table (3.2.10) and its graph is figure (3.2.37):
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2.0000 -88.6620 111.9200 0.9821 27.0220
2.2500 -170.6300 143.5000 | -1.9743 37.1870
2.5000 -323.6500 182.0000 | -4.4848 56.1750
2.7500 -625.4900 226.9400 | -5.7279 94.2230
3.0000 -1265.1000 276.7900 | -5.6989 | 177.5400
3.2500 -2741.2000 325.8100 | -5.5265 | 378.4800
3.5000 -6377.7000 351.9200 | -5.5885 | 891.9700
3.7500 -14713.0000 | 294.3400 | -5.5922 | 2056.9000
4.0000 -26366.0000 64.2780 -5.1018 | 3353.6000
4.2500 -29651.0000 | -280.6100 | -3.4867 | 2562.6000
4.5000 -28443.0000 | -556.3500 | -1.2642 | 881.1500
4.7500 -32360.0000 | -768.2100 | -0.2127 | 167.6300
5.0000 -40674.0000 | -995.0200 | -0.0189 18.6630

Figure (3.2.37): The solution of (35) at a=0

At a-level = 0.5, the solution is figure (3.2.38) in the appendix. At a-level =1, the

solution is figure (3.2.39):

Figure (3.2.39): The solution of (35) at a=1
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While x(t) is (1)-differentiable and y(t) is (2)-differentiable, then the model will

be:

Uug=1l4+a,vy=16—-a,ry,=14+a,so =16 —«a

a
u' =u—(0.05- %)vs

Iy il
vV =v (0.01+50)ur

r' = —0.4r + 0.01lvs
s' = —0.4s + 0.01ur

(36)

We solve (36) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is table (3.2.11), where its graph is figure (3.2.40):

Table (3.2.11)

: The solution of (36) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 | 16.0000
0.5000 13.4700 25.1650 12.8300 | 13.9430
1.0000 8.8983 40.5230 12.4000 | 12.0750
1.5000 -3.8096 66.4900 12.7820 | 10.0690
2.0000 -30.4190 110.9000 13.8750 | 7.2584
2.5000 -73.7510 187.4200 14.5780 | 2.5670
3.0000 -116.8800 317.2500 10.8370 | -3.7206
3.5000 -121.0900 527.5900 -1.6578 | -5.8170
4.0000 -121.6100 864.2700 | -11.5930 | -0.5437
4.5000 -287.0500 1418.7000 4.2701 | 3.2886
5.0000 -415.1800 23453000 | -7.2862 | -0.1676
5.5000 -713.0700 3865.3000 | -5.6272 | 0.7536
6.0000 | -1216.4000 6375.8000 | -1.4206 | -1.9897
6.5000 | -2024.1000 | 10510.0000 | 1.6793 | -1.5380
7.0000 | -3336.6000 | 17325.0000 | 2.8722 | 0.5984
7.5000 -5478.6000 28564.0000 0.2206 1.1360
8.0000 -9026.5000 | 47095.0000 | -0.9066 | 0.8421
8.5000 | -14898.0000 | 77648.0000 1.7127 0.1173
9.0000 | -24555.0000 | 128020.0000 | 1.2120 | -0.3156
9.5000 | -40480.0000 | 211070.0000 | 1.1247 0.0875
10.0000 | -66728.0000 | 348000.0000 | -0.7788 | -0.2136
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Figure (3.2.40): The solution of (36) at a=0

At a-level = 0.5, the solution is figure (3.2.41) in the appendix. At a-level = 1, the

solution is figure (3.2.42):

Figure (3.2.42): Themsolution of (36) at a=1

Now, if x(t) is (2)-differentiable and y(t) is (1)-differentiable, then the model will

=y — _2
v' =u—(0.05 SO)vs

r'=—0.4s+ 0.01ur
s'=—0.4r+ 0.01vs
Uug=14+avyg=16—-a,ry=14+a,so = 16 — «a

(37)

We solve (37) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =

0, the solution is figure (3.2.43):
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Figure (3.2.43): The solution of (37) at a=0

At a-level = 0.5, the solution is figure (3.2.44) in the appendix. At a-level = 1, the
solution is figure (3.2.45):

—

Figure (3.2.45): The solution of (37) at a=1

If x(t) and y(t) are (2)-differentiable, then the model will be:
a

u' =v—(0.01+ %)ur

a
v' =u—(0.05— %)vs
r'=—0.4r + 0.01vs

s'=—0.4s + 0.01ur

uy=4+avy=16—-a,r=14+a,5i =16 —« (38)

We solve (38) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution graphs are figure (3.2.46) and figure (3.2.47):
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Figure (3.2.46): The solution 0}(38) at a=0 for short time period

X Y

Figure (3.2.47): The solution of (38) at =0 as time increases

At a = 0,ast - oo, u(t) » 68.40,v(t) » 23.39,r(t) » 34.20and s(t) -

58.48. So the solution is asymptotically stable for y(t) but there is no fuzzy
solution for x(t).

At a-level = 0.5, the solution graphs are figure (3.2.48) and figure (3.2.49) and
figure (3.2.50) in the appendix. At a-level =1, the solution is figure (3.2.51):

Figure (3.2.51): The solution of (38) at a=1
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Now, we let b = (0.01,0.025,0.035,0.04) a trapezoidal fuzzy number. So,
[bl, = [0.015 +—, 0.045 — %] and we obtain the following model:

x'(t) =x —(0.01,0.025,0.035,0.04)xy
y'(t) =—-0.4y+ 0.01lxy
With fuzzy initial conditions:
[X0le =14+ a,16 — a], [Vo]la = [14 + @, 16 — a]

If x(t) and y(t) are (1)-differentiable, then the model will be:

a
u' =u—(0.045 - @)vs

v' =v—(0.015+ W)ur

r' =—0.4s + 0.01lur
s'=—0.4r + 0.01vs
Uuy=14+avy=16—-a,r,=14+a,5) =16 —« (39)
The first equilibrium point is (0,0,0,0) for any o —level but the second equilibrium
point varies according to the a—level, as in the following table (3.2.12)

Table (3.2.12): The equilibrium points of (39)

o- level u v T S
0 57.69 27.7345 32.05 46.2241
0.5 50.3968 31.748 31.498 39.685
1 44,7476 35.7561 31.9625 35.7561

Table (3.2.13): The solution of (39) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 14.4330 19.7270 12.9140 15.3500
0.5000 14.2900 24.5680 11.8480 14.9450
0.7500 13.1340 30.8770 10.7520 14.8400
1.0000 10.2460 39.1270 9.5600 15.1240
1.2500 4.4370 49.9420 8.1833 15.9510
1.5000 -6.3388 64.1270 6.5108 17.5840
1.7500 -25.6770 82.6750 4.4207 20.4940
2.0000 -60.2670 106.6800 | 1.8319 25.5690
2.2500 -123.1100 137.0700 | -1.1711 34.5800
2.5000 -240.9100 | 173.9500 | -4.1255 | 51.2660
2.7500 -471.8200 215.7000 | -6.1079 84.0460
3.0000 -949.3200 | 258.5200 | -6.5279 | 152.9700

We solve (39) by Runge-Kutta method in Matlab at a-level= 0,0.5,1. At a-level =
0, the solution is table (3.2.13), where its graph is figure (3.2.52):
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3.2500 | -1990.8000 | 294.5400 | -6.2192 | 307.2000
5000 | -4299.9000 | 301.0600 | -6.0920 | 654.4300
3.7500 | -8773.2000 | 226.0200 | -5.9265 | 1296.5000
4.0000 | -13942.0000 | 17.0820 | -5.2176 | 1807.2000
4.2500 | -15552.0000 | -263.9200 | -3.4695 | 1327.2000
4.5000 | -15737.0000 | -497.7300 | -1.3279 | 505.1700
4.7500 | -18162.0000 | -688.9200 | -0.2630 | 114.3500
5.0000 | -22800.0000 | -894.2000 | -0.0292 | 15.9290
Figure (3.2.52): The solution of (39) at a=0

At a-level = 0.5, the solution is figure (3.2.53) in the appendix. At a-level = 1, the
solution is table (3.2.14), where its graph is figure (3.2.54):

Table (3.2.14): The solution of (39) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 15.0000 15.0000 | 15.0000 | 15.0000
0.2500 16.9140 17.6170 14.1240 14.1360
0.5000 19.1010 20.8700 | 13.3640 | 13.4220
0.7500 21.5580 24,9230 | 12.7120 | 12.8680
1.0000 24.2490 29.9860 12.1570 12.4910
1.2500 27.0840 36.3360 11.6820 12.3230
1.5000 29.8650 44.3390 11.2640 12.4160
1.7500 32.2090 54.4920 10.8640 12.8610
2.0000 33.3740 67.4800 10.4110 13.8160
2.2500 31.9440 84.2720 9.7847 15.5680
2.5000 25.1020 106.2600 8.7682 18.6720
2.7500 7.0723 135.4100 7.0017 24.2700
3.0000 -35.0690 174.2200 | 3.9696 | 34.9550
3.2500 -132.6000 | 224.4200 | -0.7368 | 57.1450
3.5000 -367.6600 | 281.8500 | -6.2956 | 108.0400
3.7500 -958.8600 | 325.8500 | -9.3968 | 233.6200
4.0000 | -2392.3000 | 316.0100 | -9.0121 | 531.3700
4.2500 | -5047.8000 | 186.6400 | -8.2443 | 1030.9000
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4.5000 | -7146.5000 | -96.7960 | -6.7433 | 1182.3000
4.7500 | -6992.5000 | -401.0100 | -3.7767 | 626.4700
5.0000 | -7133.9000 | -629.7400 | -1.0548 | 170.6200

Figure (3.2.54): The solution of (39) at =1

While x(t) is (1)-differentiable and y(t) is (2)-differentiable, then the model will
be as follow:

a
— — 045 — —
u' =u—(0.045 100)175

a
v =v—(0.015+ W)ur
r' = —0.4r + 0.01vs

s’ =—0.4s + 0.01ur
Uuy=14+avy=16—-a,1r,=14+a,5 =16 —« (40)
We solve (40) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.55):

E

Figure (3.2.55): The solution of (40) at a=0

70



At a-level = 0.5, the solution is figure (3.2.56) in the appendix. At a-level = 1, the
solution is figure (3.2.57):

Figure (3.2.57): The solution of (40) at a=1

If x(t) is (2)-differentiable and y(t) is (1)-differentiable, then we have the

following model:
a
u' =v—(0.015+ W)ur

a
v' =u—(0.045 — m)vs

r' =—0.4s + 0.01lur
s'=—-0.4r + 0.01vs
Uu=l4+avy=16—-a,r=14+a,s) =16 — « (41)
We solve (41) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.58):

Figure (3.2.58): The solution of (41) at a=0

At a-level = 0.5, the solution is figure (3.2.59) in the appendix. At a-level = 1, the

solution is figure (3.2.60):
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Figure (3.2.60): Them;olution of (41) at a=1

If x(t) and y(t) is (2)-differentiable, then we have the following model:

a
u' =v—(0.015+ W)ur

a
v' =u—(0.045 — m)vs
r' = —0.4r + 0.01vs

s' = —0.4s + 0.01ur
uy=14+avy=16—-a,rn=14+a,s =16 —«a (42)
We solve (42) by Runge-Kutta method in Matlab at a-level= 0,0.5,1. At a-level
= 0, the solution graphs are figure (3.2.61) and figure (3.2.62):

Xt YR

Figure (3.2.61): The solution of (42) at a=0 for short time period
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Figure (3.2.62): The solution 5f(42) at 0=0 as time increases

We can note that the solution of y(t) is asymptotically stable while there is no
fuzzy solution for x(t) sinceast — oo, u(t) = 57.7,v(t) = 27.74,r(t) -
32.50, s(t) » 46.22 and u(t) > v(t).

At a-level = 0.5, the solution graphs are figure (3.2.63), figure (3.2.64) and figure
(3.2.65) in the appendix. At a-level = 1, the solution graphs are figure (3.2.66),
figure (3.2.67) and figure (3.268):
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Figures (3.2.67) and (3.2.68): The solution of (42) at a=1 as time increases

At o-level=1,ast —» oo, u(t) - 44.74,v(t) -» 35.76,r(t) » 31.96 and s(t) —
35.76. So the solution is asymptotically stable but there is no fuzzy solution for
x(t) and the solution isn’t equal to the crisp one.

For b = 0.03. Firstly, we assume it a triangular fuzzy number, then we obtain
fuzzy unacceptable and unstable solution when x(t) and y(t) are (1,1), (1,2) and
(2,1)-differentiable, but at @ = 1 the solution is equivalent to the crisp case. While,
when x(t) and y(t) are (2)-differentiable, the solution is asymptotically stable,
but we note that u(t) > v(t) ast — oo, so there is no fuzzy solution for x(t) but
this solution is acceptable biologically. At a = 1 the solution is the same as the
solution of the crisp case. Secondly, we assume b a trapezoidal fuzzy number then
we obtain the same results for all cases of derivatives else at « = 1 the solution not
similar to the crisp case. So the triangular fuzzy number is better than the
trapezoidal fuzzy number. So we compare between a triangular fuzzy number of
small support with other of large support. We choose the case when x(t) and y(t)
are (2)-differentiable since we haven’t get a fuzzy solution for the rest forms of the
derivative.

Therefore, we let b = (0.029, 0 03,0.031) a triangular fuzzy number with small

support. So, [O 029 + m 0.031 ——] Then we have the following
model for x(t) and y(t) are (2)-differentiable:
a
"=1v—-1(0.02
u' =v—(0.0 9+10690)ur
"=u—(0.031—
v' =u—(0.03 1000)125
r' = —=0.4r + 0.01vs
= —0.4s + 0.01ur
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Uuy=1l4+avy=16—-a,rp, =14+ a,s) =16 — « (43)
We solve (43) by Runge-Kutta method in Matlab at a-level=0. The solution is
figure (3.2.69) and figure (3.2.70):

Figure (3.2.69): The solution of(43) at =0 for short time period
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Figure (3.2.70): The solutiony"c‘)f(43) at =0 as time increases

From previous figures we can note that the solution is periodic and stable but it’s
clear that u(t) > v(t) as t — oo. So this solution is fuzzy unacceptable.
While when b = (0.005,0.03,0.055) a triangular fuzzy number of large support

with a — level [b], = [0.005 + %, 0.055 — %] we have the following model
for x(t) and y(t) are (2)-differentiable:

a
u' =v—(0.005+ E)ur

a
v' =u—(0.055 - 4—0)175

r'=—0.4r 4+ 0.01vs
s’ =—0.4s + 0.01ur
Uy=14+avy=16—-a,rn=14+a,5i =16 —« (44)
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We solve (44) in Matlab at a-level= 0. The solution is figure (3.2.71):

=

X, Yin

Figure (3.2.71): The solution of (44) at o=0

Here we can see that the solution is asymptotically stable but u(t) > v(t) ast -
oo with large difference. So this solution is fuzzy unacceptable.

In addition, we assume b a fuzzy triangular fuzzy number with support such that
the distance between it endpoints and the core unequal. For example b =
(0.01,0.03,0.035) and b = (0.025,0.03,0.05). Figure (3.2.72) and figure (3.2.73)
show the solution with fuzzy initial conditions [x,], =[14+ a,16 —a] =
[vol, and fuzzy number b when x(t) and y(t) are (2)-differentiable at « = 0.

(). Y

Figure (3.2.72) : The solution when b = (0.01,0.03,0.035)
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Figure (3.2.73) : The solution when b = (0.025,0.03,0.05)

From figures (3.2.72) and (3.2.73), we note that the solutions are asymptotically
stable. So, we conclude that for any fuzzy number b = (b,, b,, b3) Whenever at
least one of the differences (b, — b,y), (b, — b3) increased then the solution will
be asymptotically stable. And when b, and b; are closer to the core b,, the
solution will be periodic with small difference between u(t) and v(t).

Now, we want to make ¢ a fuzzy number using triangular fuzzy number and then
using trapezoidal fuzzy number. First, We assume that ¢ = (0.3,0.4,0.5) a

a

triangular fuzzy number. Therefore |, [c], = [0.3 + 130 0.5 — ik

If x(t) and y(t) are (1)-differentiable, then we have the following model:
u' =u—0.03vs
v' =v—0.03ur
'~ _(05 - %
r'=—(0.5 10)5 + 0.01ur

a
"= —(03+— .01
s (03+1O)r+00 Us

With the initial conditions:

Uuy=l4+avy=16—-ar=14+a,s) =16 —«a (45)

The first equilibrium point is (0,0,0,0) for any o —level. The second equilibrium
point varies according to the a—level, as in the following table (3.2.15)

Table (3.2.15): The equilibrium points of (45)

a - level u v T S
0 35.5689 42.1716 39.521 28.1144
0.5 38.0583 41.3839 36.246 30.6547
1 40 40 33.3333 33.3333




We solve (45) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is table (3.2.16), where its graph is figure (3.2.74):

Table (3.2.16): The solution of (45) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 | 16.0000
0.2500 15.6400 18.8740 12.5120 15.6940
0.5000 17.3420 22.5800 11.0420 15.6170
0.7500 18.9540 27.4000 9.5478 15.8210
1.0000 20.1910 33.7140 7.9689 16.3860
1.2500 20.5370 42.0430 6.2245 17.4430
1.5000 19.0460 53.0800 4.2053 19.2130
1.7500 14.0070 67.7020 1.7694 22.0770
2.0000 2.2023 86.8740 -1.2425 26.7250
2.2500 -22.4530 111.2900 | -4.9405 34.4490
2.5000 -71.8880 140.1800 | -9.1796 | 47.7560
2.7500 | -168.9300 | 168.9800 | -13.1690 | 71.3570
3.0000 | -353.9000 | 186.2200 | -15.2740 | 113.1000
3.2500 | -678.4800 | 175.5100 | -14.4500 | 180.5400
3.5000 | -1159.2000 | 123.5700 | -12.2340 | 266.1300
3.7500 | -1687.6000 | 24.0060 | -10.1170 | 324.1100
4.0000 | -2063.1000 | -112.8500 | -7.6342 | 292.1300
4.2500 | -2280.7000 | -258.9700 | -4.5698 | 183.7400
4.5000 | -2574.3000 | -397.6000 | -1.8955 | 80.8910
4.7500 | -3112.2000 | -536.8000 | -0.5059 | 25.2500
5.0000 | -3926.8000 | -696.5800 | -0.0870 5.4459

Figure (3.2.74): The solution of (45) at a=0

At a-level = 0.5, the solution is figure (3.2.75) in the appendix. At a-level = 1, the

solution is figure (3.2.76):
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Figure (3.2.76): The solution of (45) at a=1

If x(t) is (1)-differentiable and y(t) is (2)-differentiable, then we have the

following model:
u' =u—0.03vs
v =v—0.03ur

a
r'=—(0.3+ 1—0)r + 0.01vs

a
s'"=—(0.5—- E)S + 0.01ur

uy=14+avy=16—-a,r,=14+a,s =16 — « (46)
We solve (46) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is table (3.2.17), where its graph is figure (3.2.77):

Table (3.2.17): The solution of (46) at a=0
Time u(t) v(t) r(t) s(t)
0.0000 | 14.0000 | 16.0000 | 14.0000 | 16.0000
0.2500 | 15.7230 | 18.8030 | 13.6270 | 14.6020
0.5000 | 17.7560 | 22.2290 | 13.3310 | 13.4150
0.7500 | 20.1410 | 26.4170 | 13.1210 | 12.4270
1.0000 | 22.9140 | 31.5350 | 13.0090 | 11.6270
1.2500 | 26.1050 | 37.7890 | 13.0100 | 11.0100
1.5000 | 29.7240 | 45.4270 | 13.1470 | 10.5730
1.7500 | 33.7450 54,7510 | 13.4520 | 10.3230
2.0000 | 38.0730 66.1270 | 13.9730 | 10.2670
2.2500 | 42.5050 | 79.9960 | 14.7780 | 10.4220
2.5000 | 46.6490 96.9050 | 15.9650 | 10.8090
2.7500 | 49.8270 | 117.5400 | 17.6770 | 11.4500
3.0000 | 50.9060 | 142.8300 | 20.1220 | 12.3470
3.2500 | 48.1020 | 174.1600 | 23.5860 | 13.4500
3.5000 | 38.8070 | 213.9400 | 28.4200 | 14.5430
3.7500 | 19.6630 | 266.5900 | 34.9540 | 15.0400
4.0000 | -11.9930 | 340.6500 | 42.9980 | 13.6420
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4.2500 | -53.2220 | 450.1400 | 50.5310 | 8.3645

4.5000 | -84.9120 | 609.2100 | 51.2630 | -1.3572
4.7500 | -71.7490 | 814.8800 | 36.5320 | -10.0670
5.0000 | -2.6443 | 1056.3000 | 8.3466 | -11.4290

Figure (3.2.77): The solution of (46) at a=0

At a-level = 0.5, the solution is figure (3.2.78) in the appendix. At a-level = 1, the

solution is figure (3.2.79):

Figure (3.2.79): The solution of (46) at a=1

If x(t)is (2)-differentiable and y(t) is (1)-differentiable, then we have the

following model:

u' =v—0.03ur
v' =u—0.03vs

a
r'=—(0.5 - 1—0)5 + 0.01ur

a
s"=—(0.3 +E)r + 0.01vs
Uug=1l4d+avg=16—-a,ry=14+a,so =16 — a

(47)
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At a-level = 0, the solution is figure (3.2.80):

Figure (3.2.80): The solution of (47) at a=0

At a-level = 0.5, the solution is figure (3.2.81) in the appendix. At a-level = 1, the
solution is figure (3.2.82):

Figure (3.2.82): Théwéolution of (46) at a=1

If x(t) and y(t) are (2)-differentiable, then we have the following model:
u' =v—0.03ur
v' =u—0.03vs

a
r'=—(0.3+ 1—69)1” + 0.01vs
s'=—(0.5- E)S + 0.01ur

With the initial conditions:
Uuy=14+avy=16—-a,r,=14+a,5) =16 —« (48)
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We solve this model by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-
level = 0, the solution graphs are figure (3.2.83), figure (3.2.84) and figure
(3.2.85):

—u

—

—r
%

Figures (3.2.84) and (3.2.85): The sglution of (48) at a=0 as time increases
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At a — level = 0, the solution is asymptotically stable and there is no fuzzy
solution for y(t) since ast — oo, u(t) » 35.57,v(t) » 42.17,r(t) -
39.52 and s(t) — 28.2, and r(t) > s(t) ast - oo.

0.5, the solution graphs are figure (3.2.86), figure (3.2.87) and figure

At a-level =
1, the solution is figure (3.2.89):

(3.2.88) in the appendix. At a-level =

X, Y
2 =

40—} \‘ /“l\ )/\ ‘./”‘ /“| "»“\‘ /‘\ ’el ‘\| [

VTR TR T

2 / | ] \ | .
% \,,I \/ \ // \/ “\k \k// \// \// "\v

Figure (3.2.89): The solutlon of(48) at a=1

Then, we assume ¢ = (0.25,0.35,0.45,0.55) a trapezoidal fuzzy number with a-
level [c], = [0.25 +%, 0.55 — %] If x(t)and y(t) are (1)-differentiable, then

we have the following model:
u' =u—0.03vs
v' =v—0.03ur

a
= —(0.55 — 1—0)5 + 0.01ur

a
s'=—(0.25+ E)r + 0.01vs

With the initial conditions:

uy=14+avy=16—-a,r=14+a,5i =16 —« (49)

The equilibrium points of (49) is (0,0,0,0) for any a —level. However, the model
has another equilibrium point which varies according to the a—level, as in the

following table (3.2.18).
Table (3.2.18): The equilibrium pomts of (49)

a — level u v
0 32.5148 42.2885 42. 353 25. 6294
0.5 35.5689 421716 39.521 28.1144
1 38.0583 41.3839 36.246 30.6547
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We solve model (49) by Runge-Kutta method in Matlab at a-level= 0, 0.5, 1. At a-

level = 0, the solution is table (3.2.19) and figure (3.2.90):

Table (3.2.19): The solution of (49) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 15.6270 18.8870 12.2980 15.8700
0.5000 17.2740 22.6470 10.5810 15.9770
0.7500 18.7540 27.5880 8.7972 16.3810
1.0000 19.7200 34.1290 6.8738 17.1760
1.2500 19.5470 42.8340 4.7148 18.5170
1.5000 17.0990 54.4330 2.1959 20.6630
1.7500 10.3210 69.7840 -0.8310 24.0600
2.0000 -4.6197 89.6510 -4.4973 29.5160
2.2500 -34.8550 114.0700 -8.7980 38.5050
2.5000 -93.8280 140.6800 | -13.3050 | 53.7550
2.7500 -205.1200 162.1200 | -16.7830 | 79.8230
3.0000 -402.6200 164.8200 | -17.5550 | 122.1400
3.2500 -710.9100 134.9300 | -15.5090 | 180.3200
3.5000 | -1097.0000 | 66.1940 -12.7320 | 234.7800
3.7500 | -1446.2000 | -38.8330 | -10.0990 | 245.2400
4.0000 | -1674.0000 | -165.1200 | -7.0575 | 190.9200
4.2500 | -1864.8000 | -293.8800 | -3.8209 | 107.7300
4.5000 | -2175.1000 | -420.5200 | -1.4306 44.2160
4.7500 | -2684.7000 | -556.3400 | -0.3533 13.1130
5.0000 | -3410.7000 | -718.6800 | -0.0570 2.6875

Figure (3.2.90): The golution of (49) at a=0

At a-level = 0.5, the solution is figure (3.2.91) in the appendix. At a-level = 1, the
solution is table (3.2.20) and figure (3.2.92):
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Table (3.2.20): The solution of (49) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 15.0000 15.0000 15.0000 | 15.0000
0.2500 17.2550 17.2820 13.9330 | 14.3240
0.5000 19.9320 20.0700 12.9760 | 13.8020
0.7500 23.0830 23.4820 12.1170 | 13.4440
1.0000 26.7500 27.6740 11.3450 | 13.2680
1.2500 30.9490 32.8430 10.6430 | 13.3070
1.5000 35.6420 39.2560 9.9883 13.6120
1.7500 40.6780 47.2700 9.3452 14.2660
2.0000 45.6910 57.3850 8.6537 15.4080
2.2500 49.8990 70.3170 7.8113 17.2760
2.5000 51.6660 87.1200 6.6382 20.3080
2.7500 47.6250 109.3500 4.8266 25.3440
3.0000 30.4630 139.1400 1.8913 34.1450
3.2500 | -16.5190 178.5200 | -2.7400 | 50.7070
3.5000 | -133.2000 | 225.6600 | -9.0076 | 84.5930
3.7500 | -414.4700 | 263.7300 | -14.2540 | 158.2300
4.0000 | -1033.1000 | 253.9100 | -14.3050 | 308.4300
4.2500 | -2074.1000 | 159.5900 | -11.8900 | 529.3500
4.5000 | -3030.2000 | -32.9040 -9.7244 | 632.4100
4.7500 | -3232.1000 | -267.1000 | -6.5245 | 434.6900
5.0000 | -3245.0000 | -471.1000 | -2.7735 | 171.5300

Figure (3.2.92): The solution of (49) at a=1I

While when x(t) is (1)-differentiable and y(t) is (2)-differentiable, we have the

following model:

u' =u—0.03vs
v =v—0.03ur

a
r'=—(0.25+ 1—0)r + 0.01vs

o
s"=—(0.55 - 1—0)5 + 0.01ur
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With the initial conditions:

Uug=14d+avg=16—-a,ry =14+ a,so =16 — «a
We solve (50) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =

0, the solution is figure (3.2.93):

Figure (3.2.93): The solution of (50) at 0=0

(50)

At a-level = 0.5, the solution is figure (3.2.94) in the appendix. At a-level = 1, the
solution is figure (3.2.95):

X, Yit)
~

Figure (3.2.95): The solution of (50) at a=1

If x(t) is (2)-differentiable and y(t) is (1)-differentiable, then we have the

following model:

u' =v—0.03ur
v =u—0.03vs

a
r' = —(0.55 — E)S + 0.01ur

a
s'=—(0.25 + E)r + 0.01vs
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Ug=1l4+avy=16—-a,ry,=14+a,so =16 —«a

At a-level = 0, the solution is figure (3.2.96):

Figure (3.2.96): The solution of (51) at a=0

(51)

At a-level = 0.5, the solution is figure (3.2.97) in the appendix. At a-level = 1, the
solution is figure (3.2.98):

If x(t) and y(t) are (2)-differentiable, then we have the following model:

Xit) . Y(t)
N

Figure (3.2.98): Themgolution of (51) at a=1

u' =v—0.03ur
v =u—0.03vs

a
r'=—(0.25+ 1—0)r + 0.01vs

o
s" =—(0.55 - 1—0)5 + 0.01ur

Uug=1l4d+avy=16—-a,ry=14+a,so =16 — «a

(52)
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We solve this model by Runge-Kutta method in Matlab at a-level= 0, 0.5, 1. At a-
level = 0, the solution graphs are figure (3.2.99), figure (3.2.100) and figure

(3.2.101):

Figure (3.2.99): The solution of (52) at a=0 for short time period

X1, Y

A-IJ "‘\‘

Figures (3.2.100) and (3.2.101): The solution of (52) at o=0 as time increases

At a-level = 0, ast - oo, u(t) -» 32.51,v(t) - 42.29,r(t) - 43.35, s(t) »
25.63. So the solution is asymptotically stable but there is no fuzzy solution for
y(t) since r(t) > s(t).
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At a-level = 0.5, the solution graphs are figure (3.2.102), figure (3.2.103) and
figure (3.2.104) in the appendix. At a-level = 1, the solution graphs are figure

(3.2.105), figure (3.2.106) and figure (3.2.107):

Figure (3.2.105): The solution of (52) at a=1 for short time period

A
‘ ) \
> f ;‘/ : \ “‘

)
Time

X1 YD

X(t). Y[t

Figures (3.2.106) and (3.2.107): The solution of (52) at a=1 as time increases
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At a-level = 1, ast - o, u(t) -» 38.06,v(t) » 41.39,r(t) - 36.24, s(t) -
30.66. Therefore, the solution is asymptotically stable and there is no fuzzy
solution for y(t).

From previous work, at o« < 1 we conclude that we obtain a biologically
acceptable solution only when x(t) and y(t) are (2)-differentiable which is
asymptotically stable to the equilibrium point whether for trapezoidal or triangular
fuzzy number but we note that r(t) > s(t) fort - oo, so there is no fuzzy
solution for y(t). At @ = 1 the solution is the same as the solution of the crisp case
when ¢ a triangular fuzzy number but it isn’t when c a trapezoidal fuzzy number.
So, one more time the triangular fuzzy number is better than the trapezoidal fuzzy
number.

If we fuzzify c by a triangular fuzzy number with small support , for example ¢ =
(0.3999, 0.4,0.4001) then the solution will be periodic and stable, but with large
support, for example ¢ = (0.1, 0.4, 0.7) the solution will be asymptotically stable.
As in figures (3.2.108) and (3.2.109) we plot the solution of x(t) and y(t) when
they are (2)-differentiable at a = 0.

l ~
i \\ \ | H i
‘M‘WHH‘ H | \|\ ‘ ‘\I‘\\ \| ‘ \I “
||JJRJ U¢ UJUHJUJ“ J||,J/fUJJJ|']1

T\me

=== — T

H

Figure (3.2.108): The solution of X(t) and Y(t) when ¢ = (0.3999, 0.4, 0.4001)
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Figure (3.2.109): The solution of f(t) and Y(t) when ¢ = (0.1,0.4,0.7)

In figure (3.2.108) the solution is oscillated about the equilibrium point so the
solution is stable. We try to solve this in Matlab for too long time period and then
we note that r(t) > s(t) with unclear difference but the difference is clear when ¢
Is a triangular fuzzy number with large support.

Finally, we assume c a triangular fuzzy number with support such that the distance
between its endpoints and the core unequal. Figure (3.2.110) and figure (3.2.111)
show the solution of x(t) and y(t) when they are (2)-differentiable at a-level= 0
when ¢ = (0.1,0.4,0.405) and ¢ = (0.395, 0.4,0.6), respectively.

<

Figure (3.2.110): The solution of X(t) and Y(t) when ¢ = (0.1, 0.4, 0.405)
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Figure (3.2.111): The solution of X(t) and Y(t) when ¢ = (0.395,0.4,0.6)

From previous figures we conclude that if the distance for at least one support
endpoints is long from the core then the solution will be asymptotically stable.

Now, we assume d a fuzzy number. First, using triangular fuzzy number. we let
d = (0.005,0.01,0.015) such that[d], = [0.005 + % 0.015 —%] Then if
x(t) and y(t) are (1)-differentiable, then we have the following model:

u' =u—0.03vs

v' =v—0.03ur

P ¢
r' =—0.4s + (0.005 + 2Oo)ur

a
= — 4 015 — —
S 0.4r + (0.015 2Oo)vs

Uuy=14+avy=16—-a,r,=14+a,s =16 —« (53)

The equilibrium points of (53) is (0,0,0,0) for any o —level but the model has
another equilibrium point which varies according to the o-level, as in the
following table (3.2.21).

Table (3.2.21): The equilibrium points of (53)
T S

a — level u v
0 38.46 55.4689 48.075 23.112
0.5 37.9402 | 44.9831 39.521 28.1144
1 40 40 33.3333 | 33.3333

We solve model (53) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-
level = 0O, the solution is table (3.2.22) and figure (3.2.112):
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Table (3.2.22): The solution of (53) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 | 16.0000
0.2500 15.6410 18.8640 12.6640 | 15.6980
0.5000 17.3390 22.5370 11.3440 | 15.7100
0.7500 18.9220 27.2870 9.9981 16.1200
1.0000 20.0520 33.4870 8.5708 17.0690
1.2500 20.0890 41.6510 6.9823 18.7960
1.5000 17.8000 52.4740 5.1148 21.7340
1.7500 10.7950 66.8510 2.7913 26.6920
2.0000 -5.8359 85.7520 -0.2573 | 35.3210
2.2500 -42.4270 109.6300 -4.4205 51.1180
2.5000 | -121.8800 135.9400 | -10.1660 | 81.9190
2.7500 | -290.4000 151.4200 | -17.5880 | 143.0400
3.0000 | -599.3200 115.3900 | -24.9260 | 245.4100
3.2500 | -902.2300 -26.1100 | -27.6720 | 303.6800
3.5000 | -896.1600 | -239.4600 | -23.3530 | 187.8100
3.7500 | -834.7100 | -447.7200 | -14.3160 | 52.4390
4.0000 | -963.0500 | -649.4200 | -5.9358 7.0522
4.2500 | -1220.2000 | -865.6000 | -1.6354 0.4969
4.5000 | -1565.4000 | -1121.0000 | -0.2943 0.0245
4.7500 | -2010.0000 | -1441.2000 | -0.0320 0.0013
5.0000 | -2580.9000 | -1850.8000 | -0.0019 0.0001

Figure (3.2.112): The”solution of (53) at a=0

At a-level = 0.5, the solution is figure (3.2.113) in the appendix. At a-level = 1, the
solution is figure (3.2.114):
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Figure (3.2.114): The solution of (53) at a=1

When x(t) is (1)-differentiable and y(t) is (2)-differentiable, we have the

following model:
u' =u—0.03vs

v =v—0.03ur

a
"=-04 015 — —
r 0.4r + (0.015 200)175

a
"'=-04 0.005 + —
S s+ ( + Zoo)ur

uy=14+avy=16—-a,r,=14+a,s =16 — « (54)

We solve (54) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.115):

X .Y
o n

Figure (3.2.115): Them;olution of (54) at a=0

At a-level = 0.5, the solution is figure (3.2.116) in the appendix. At a-level =1, the
solution is figure (3.2.117):
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Figure (3.2.117): The solution of (54) at a=1

If x(t) is (2)-differentiable and y(t) is (1)-differentiable, then we have the

following model:

u' =v—0.03ur
v =u—0.03vs
L a
r' = —0.4s + (0.005 + —Zoo)ur

P _ _%
s' =—0.4r + (0.015 200)175

Uug=1l4d+avg=16—-a,ry=14+a,so =16 — «a
At a-level = 0, the solution is figure (3.2.118):

X(t). Yet)

Figure (3.2.118): The solution of (55) at a=0

(55)

At a-level = 0.5, the solution is figure (3.2.119) in the appendix. At a-level = 1, the
solution is figure (3.2.120):
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Xdt), Yt

Figure (3.2.120): The solution of (55) at a=1

If x(t) and y(t) are (2)-differentiable, then we have the following model:
u' =v—0.03ur
v' =u—0.03vs

a
= — 4 015 ——
r 0.4r + (0.015 ZOO)US

a
"'=-04 0.005 + —
S 0.4s + ( +200)ur

With the initial conditions:
Uy=14+avy=16—-a,rn=14+a,5i =16 —« (56)

We solve this model by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-
level = 0, the solution graphs are figure (3.2.121), figure (3.2.122) and figure

(3.2.123):

Time:

Figure (3.2.121): The solution of (56) at a=0 for short time period
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Figures (3.2.122) and (3.2.123): The golution of (56) at a=0 as time increases

At o-level = 0, ast —» oo, u(t) - 38. 46,v(t) - 55.46,7r(t) - 48.07, s(t) »
23.11. So the solution is asymptotically stable but there is no fuzzy solution for
y(t) since r(t) > s(t).

At a-level = 0.5, the solution graphs are figure (3.2.124), figure (3.2.125) and
figure (3.2.126) in the appendix. At a-level = 1, the solution is figure (3.2.127):

Figure (3.2.127): The solution of (56) at a=1
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Now, we assume d = (0.0025,0.0075,0.0125,0.0175) such

[0.0025 + -, 0.0175 — %] a trapezoidal fuzzy number. Then if x(¢) and y(t)

are (1)-differentiable, then we have the following model:
u' =u—0.03vs
v' =v—0.03ur

= —0.4s + (0.0025 + )ur

200

= —0.4r + (0.0175 — ﬁ)vs

With the initial conditions:
Uug=14+avyg=16—-a, 1y =14+ a,so = 16 — «a

(57)

The equilibrium points of (57) is (0,0,0,0) for any o —level but the model has

another equilibrium point which varies according to the o—level,

following table (3.2.23).

Table (3.2.23): The equilibrium points of (57)

a - level u v T
0 43.7241 83.6413 63.7644 17.4253
0.5 38.46 55.4689 48.075 23.112
1 37.9402 44,9831 39.521 28.1144

Table (3.2.24): The solution of (56) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 15.6280 18.8720 12.5310 15.8830
0.5000 17.2660 22.5800 11.0540 16.1470
0.7500 18.6900 27.4130 9.5221 16.9140
1.0000 19.4590 33.7740 7.8682 18.3880
1.2500 18.7220 42.2160 5.9972 20.9320
1.5000 14.8030 53.4720 3.7609 25.2240
1.7500 4.3409 68.4190 0.9214 32.5950
2.0000 -19.8390 87.7440 -2.9275 | 45.8920
2.2500 -73.4110 110.5200 -8.4842 71.4030
2.5000 | -190.4900 128.5600 -16.8940 | 122.7500
2.7500 | -416.7000 108.0200 -29.1160 | 214.1800
3.0000 | -648.6100 -28.2660 -42.1580 | 273.2700
3.2500 | -579.5700 -282.3200 -46.2860 | 144.5400

in the

We solve model (57) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-
= 0, the solution is table (3.2.24) and figure (3.2.128):
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3.5000 | -497.5600 -557.8000 -39.4790 | 24.8990
3.7500 | -585.5200 -871.6000 -29.0410 2.0055
4.0000 | -743.8700 -1253.9000 -19.2860 0.4268
4.2500 | -951.6500 -1718.4000 -11.4060 0.1728
4.5000 | -1220.1000 | -2283.5000 -5.8143 0.0650
4.7500 | -1565.7000 | -2978.7000 -2.4480 0.0208
5.0000 | -2010.1000 | -3847.5000 -0.8060 0.0053
D e =
. N

1500

2500 [~
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Figure (3.2.128): Themsolution of (57) at a=0

At a-level = 0.5, the solution is figure (3.2.129) in the appendix. At a-level = 1, the
solution is table (3.2.25) and figure (3.2.130):

Table (3.2.25): The solution of (57) at a=1

Time u(t) v(t) r(t) s(t)

0.0000 15.0000 15.0000 15.0000 | 15.0000
0.2500 17.2580 17.2790 13.9740 | 14.2880
0.5000 19.9440 20.0570 13.0430 | 13.7520
0.7500 23.1080 23.4500 12.1940 | 13.4110
1.0000 26.7890 27.6130 11.4110 | 13.2910
1.2500 30.9900 32.7490 10.6740 | 13.4420
1.5000 35.6390 39.1330 9.9509 13.9410
1.7500 40.5170 47.1460 9.1961 14.9170
2.0000 45.1020 57.3340 8.3326 16.5940
2.2500 48.2750 70.4970 7.2317 19.3740
2.5000 47.6250 87.8200 5.6722 24.0380
2.7500 37.9440 111.0200 3.2795 32.1880
3.0000 7.1398 142.1200 -0.5310 | 47.4880
3.2500 -74.5650 181.4500 -6.4158 79.0010
3.5000 | -282.0000 | 218.4300 | -14.0240 | 149.5100
3.7500 | -763.1400 | 208.3800 | -19.4110 | 300.3400
4.0000 | -1502.9000 | 83.4790 -18.5530 | 492.8500
4.2500 | -1851.5000 | -140.0800 | -14.6200 | 458.6200
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X(), Y

Figure (3.2.130): Themsolution of (57) at a=1

4.5000 | -1692.3000 | -361.8200 | -8.6507 | 207.9200
4.7500 | -1732.8000 | -545.5300 | -2.8511 | 50.2590
5.0000 | -2102.7000 | -722.6000 | -0.4281 7.0045

) \\ L

While x(t) is (1)-differentiable and y(t) is (2)-differentiable, we have the

following model:

!

u' =u—0.03vs
v =v—0.03ur

a
—0.4r + (0.0175 — —)vs

T 200
= 04 0025 + —
s 0.4s + (0.00 5+200

Uug=1l4d+avy=16—-a,ry=14+a,so =16 —«a

yur

(58)

We solve (54) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =

0, the solution is figure (3.2.131):

Figure (3.2.131): The solution of (58) at a=0
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At a-level = 0.5, the solution figure (3.2.132) in the appendix. At a-level = 1, the
solution is figure (3.2.133):

X .Yt

Figure (3.2.133): The solution of (58) at a=1I

If x(t) is (2)-differentiable and y(t) is (1)-differentiable, then we have the

following model:

u' =v—0.03ur
v =u—0.03vs

a
r =—04s + (0005 + m)ur

a
'=-04 015 — —
S 0.4r + (0.015 2Oo)vs

Uug=14+avyg=16—-a,ry=14+a,so = 16 — «a
At a-level = 0, the solution is figure (3.2.134):

Figure (3.2.134): The solution of (59) at a=0

(59)

At a-level = 0.5, the solution is figure (3.2.135) in the appendix. At a-level = 1, the
solution is figure (3.2.136):
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Figure (3.2.136): Th:solution of (59) at a=1

If x(t) and y(t) are (2)-differentiable, then we have the following model:
u' =v—0.03ur
v' =u—0.03vs

a
"'=-04 0175 — —
r 0.4r + (0.0175 200)175

a
s’ =—=0.4s + (0.0025 + —)ur

200
Uuy=14+avy=16—-a,ry=14+a,5 =16 —« (60)

We solve this model by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-
level = 0, the solution graphs are figure (3.2.137), figure (3.2.138) and figure

(3.2.139):

1
Time

Figure (3.2.137): The solution of (60) at a=0 for short time period
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Figures (3.2.138) and (3.2.139): The gblution of (60) at a=0 as time increases

At a=0, ast- oo, u(t)—>43.72,v(t) —» 83.64, r(t) - 63.76, s(t) —
17.42. So the solution is asymptotically stable but there is no fuzzy solution for
y(t) since r(t) > s(t).

At a-level = 0.5, the solution graphs are figure (3.2.140), figure (3.2.141) and

figure (3.2.142) in the appendix. At a-level = 1, the solution graphs are figure
(3.2.143), figure (3.2.144) and figure (3.2.145):

Figure (3.2.143): The solution of (60) at a=1 for short time period
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Figures (3.2.144) and (3.2.145): The solution of (60) at a=1 as time increases

At ¢ = 1, the solution is asymptotically stable and there is no fuzzy solution for
Y(t) since ast— oo, u(t)—> 37.94,v(t) - 45.98,r(t) - 39.52, s(t) =
28.11.

From previous work, at a < 1 the solution is biologically acceptable only when
x(t) and y(t) are (2)-differentiable. This solution is asymptotically stable but
r(t) > s(t) fort - oo, so there is no fuzzy solution for y(t) whether for
trapezoidal or triangular fuzzy number. At a = 1 the solution is the same as the
solution of the crisp case when d a triangular fuzzy number but it isn’t when d a
trapezoidal fuzzy number. So the triangular fuzzy number is better than the
trapezoidal fuzzy number.

Therefore, if we fuzzify d by a triangular fuzzy number with small support , for
example d = (0.0095,0.01,0.0105) then the solution will be periodic and stable,
but with large support, for example d = (0.0001,0.01,0.0199) the solution will
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be asymptotically stable. As in figures (3.2.146) and (3.2.147) we plot the solution
of x(t) and y(t) when they are (2)-differentiable at a = 0.

T T T T T T T p—
—
—
f o fi \ 4 qa s
120 -
100~ -
_ s “ 4
= |
= |
4 |
60 , 4
40 -
20 7Z
R
0 1 1 1 1 ! L L L L
0 10 20 30 40 50 60 70 80 9% 100

Time

—_—

Figure (3.2.146): The solution of X(t) and Y(t) when d = (0.0095,0.01,0.0105)

Figure (3.2.147): The solution of X(t) and Y(t) when d = (0.0001,0.01,0.0199)

In figure (3.2.146) the solution is stable. We try to solve this in Matlab for too long
time period and then we note that r(t) > s(t) with little clear difference but this
difference is very large when d is a triangular fuzzy number with large support.

In addition, we assume d a triangular fuzzy number with support such that the
distance between its endpoints and the core unequal. Figure (3.2.148) and figure
(3.2.149) show the solution of x(t) and y(t) when they are (2)-differentiable at
a—level =0 for d = (0.0005,0.01,0.015) and d = (0.0095,0.01,0.05),

respectively.
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Figure (3.2.148): The solution of X(t) and Y(t) when d = (0.0005,0.01,0.015)

Figure (3.2.149): The solution of X(t) and Y(t) when d = (0.0095,0.01,0.05)

Also here we conclude that if the distance for at least one support endpoints is long
from the core then the solution will be asymptotically stable.

Now, we consider all rates as fuzzy numbers at the same time. As we notice in
previous works that the triangular fuzzy number is better than the trapezoidal one.
Therefore, we use a triangular fuzzy numbers as follow:

We let  a=(051,15),b = (0.01,0.03,0.05),c = (0.3,0.4,0.5) andd =
(0.005,0.01,0.015) with there a — levels [a], = [0.5 +2,15 - %]  [by =

[0.01 +2,0.05 - %] el = [0.3 +5,0.5 - 1%] and [d], = [0.005 +

2 0.015 — L] Then we have the following model:
200 200
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x'(t) =(0.5,1,1.5)x —(0.01,0.03,0.05)xy

y'(t) = —(0.3,0.4,0.5) y + (0.005,0.01,0.015)xy
With fuzzy initial conditions:
[x0]le = [14 + a,16 — a], [yola

=[14+ a,16 — a]

Table (3.2. 26) The equilibrium pomts of (61)

a — level v
0.25 65.4394 27.4508 38.4527 33.1095
0.5 53.924 31.155 36.1098 32.4531
1 40 40 33.3333 33.3333

" = (0.5 + Syu — (0.05 — —
u’ = (0. 2)u (0. =0

If x(t) and y(t) are (1)-differentiable, then model (61) will be as follow:

Yvs

a a
v’=(15+—)v—(001——)ur

Uy = 14 + q, v0=16

—(0.5 — —)s + (0.005 + m)ur

—(0.3 — —)r + (0.015 + %)vs

a,rg=14+a,so =16 —«a
we solve (62) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is table (3.2.27), where its graph is figure (3.2.150):

Table (3.2.27): The solution of (62) at a=0

Time u(t) v(t) r(t) s(t)
0.0000 14.0000 16.0000 14.0000 16.0000
0.2500 11.7840 22.7560 12.2090 16.1700
0.5000 7.3379 32.7660 10.2820 17.0270
0.7500 -1.1495 47.5630 8.0874 19.0140
1.0000 -17.2540 69.3570 5.4225 23.0240
1.2500 -49.5600 101.2400 1.9561 31.2520
1.5000 | -120.4700 147.1900 -2.8655 49.5480
1.7500 | -301.3700 210.4400 -9.8869 96.9350
2.0000 | -862.8100 282.9300 -19.3970 | 246.7100
2.2500 | -2791.5000 296.0300 -26.5810 | 765.5200

(61)

This model has two equilibrium points. The first one is (0,0,0,0) and the second
one varies according to the o—level, as in the following table (3.2.26).

(62)
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2.5000 | -6364.5000 61.4670 -26.4250 | 1665.3000
2.7500 | -4663.7000 | -369.1300 | -21.4820 | 930.4100
3.0000 | -2369.5000 | -707.0100 -9.3617 121.4500
3.2500 | -2258.2000 | -1061.6000 | -1.4016 4.5910
3.5000 | -2542.1000 | -1548.5000 | -0.0854 0.0389
3.7500 | -2880.4000 | -2253.2000 | -0.0030 0.0001
4.0000 | -3263.9000 | -3278.4000 | -0.0001 0.0000
4.2500 | -3698.5000 | -4770.1000 0.0000 0.0000
4.5000 | -4190.9000 | -6940.4000 0.0000 0.0000
4.7500 | -4748.9000 | -10098.0000 | 0.0000 0.0000
5.0000 | -5381.2000 | -14693.0000 | 0.0000 0.0000

2000

2000 [~

4000 [~

= 6000 -

> 8000 -

-10000

12000 [~

-14000 (=

-16000
0 05

15

25

35

a5 5

Figure (3.2.150): The solution of (62) at a=0

At a-level = 0.5, the solution is figure (2.151) in the appendix. At a-level = 1, the
solution is figure (3.2.152):

140

50 80

70 80

o0 100

Figure (3.2.152): The solution of (62) at a=1

If x(t) is (1)-differentiable and y(t) is (2)-differentiable, then model (61) will be

as follow:
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!

r' =

!

S =

— (05 + %)u — (0.05 — %)vs

- (15 + %)v —(0.01 - %)ur

a
~(03 = 0)r + (0015 +

a
(0.5 = 7)s + (0.005 +

(04
20007°

(04
200"

Uug=14+avyg=16—-a,1y =14+ a,so = 16 — «a
we solve (63) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is table (3.2.28) and figure (3.2.153):

Table (3.2.28): The solution of (63) at a=0

Time u(t) v(t) r(t) s(t)

0.0000 | 14.0000 | 16.0000 14.0000 | 16.0000
0.1750 | 12.7360 | 20.4270 13.9970 | 14.8170
0.3500 | 10.8850 | 26.2240 14.1260 | 13.7150
0.5250 8.2900 33.8190 14.4100 | 12.6810
0.7000 4.7627 43.7750 14.8740 | 11.6990
0.8750 0.0821 56.8360 15.5470 | 10.7500
1.0500 | -6.0033 73.9840 16.4590 9.8108
1.2250 | -13.7590 | 96.5190 17.6360 8.8485
1.4000 | -23.4270 | 126.1600 19.0900 7.8218
1.5750 | -35.1420 | 165.1800 | 20.7940 6.6775
1.7500 | -48.7650 | 216.5700 | 22.6440 5.3533
1.9250 | -63.6060 | 284.2100 | 24.3870 3.7932
2.1000 | -78.0050 | 373.0700 | 25.5300 1.9833
2.2750 | -88.9570 | 489.3300 | 25.2700 0.0183
2.4500 | -92.1650 | 640.6500 | 22.5630 -1.8329
2.6250 | -83.2990 | 836.5200 | 16.5300 -3.1558
2.8000 | -60.5130 | 1089.5000 | 7.1398 -3.6410
2.9750 | -25.5010 | 1416.7000 | -4.5870 -3.4140
3.1500 | 19.9980 | 1842.0000 | -17.7570 | -3.1367
3.3250 | 87.7570 | 2397.6000 | -35.3990 | -4.0670
3.5000 | 262.6900 | 3134.5000 | -80.9730 | -11.3330

(63)
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Figure (3.2.153): Thémsolution of (63) at a=0

At a-level = 0.5, the solution is figure (3.2.154) in the appendix. At a-level = 1, the
solution is figure (3.2.155):

Figure (3.2.155): The solution of (63) at a=1

If x(t)is (2)-differentiable and y(t) is (1)-differentiable, then (61) will be as
follow:

' = (15 + 2w — (0.01 — —
u' = (1. +E)v—(. —%)ur
' = (0.5 + 2)u — (0.05 — —)vs
v (0. > . 0

a a
r'=—(0.5 - E)S + (0.005 + —)ur

200
‘= (03 = —)r + (0.015 + ——)vs
s =-03-1 ' 200
Uuy=1l4+avy=106—-ar=14+a,sp =16 -« (64)
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we solve (64) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution is figure (3.2.156):

Figure (3.2.156): The solution of (64) at a=0

At a-level = 0.5, the solution is figure (3.2.157) in the appendix. At a-level = 1, the
solution is figure (3.2.158):

Figure (3.2.158): The solution of (64) at a=1

If x(t)and y(t) are (2)-differentiable, then model will be as follow:
, a a
u, = (1.5 + g)v —(0.01 - %))ur
v’ = (0.5 +2)u — (0.05 — %ers
r'=—(03— E)r + (0.015 + —)vs

200

a a
s'=—(0.5—- E)S + (0.005 + ﬁ)ur
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With the initial conditions:

Uug=14d+avg=16—-a,ry =14+ a,so =16 — «a
we solve (65) by Runge-Kutta method in Matlab at a-level=0, 0.5, 1. At a-level =
0, the solution graphs are figure (3.2.159) and figure (3.2.160):

Xi). Vi)

Figure (3.2.160): The solution of (65) at a=0 as time increases

(65)

At o-level = 0, ast - oo, u(t) - 84.34,v(t) - 23.71,r(t) - 42.17, s(t) —
35.57. So the solution is asymptotically stable but u(t) > v(t) and r(t) > s(t).
Therefore, there are no fuzzy solutions for x(t) and y(t).

At o-level = 0.5, the solution graphs are figure (3.2.161), figure (3.2.162) and
figure (3.2.163) in the appendix. At a-level = 1, the solution is figure (3.2.164):
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Figure (3.2.164): The solution of (65) at a=1

Now, we try to fuzzify the model using triangular fuzzy numbers of small supports.
For example, we let a = (0.9999,1.1.0001), b = (0.0299,0.03,0.0301), c =
(0.3999,0.4,0.4001) and d = (0.0099,0.01,0.0101). Since forms (1,1), (1,2),
(2,1)-differentiable give unacceptable solutions for our model, we find the
graphical solution of the new model when x(t) and y(t) are (2)-differentiable at
a = 0 as in figure (3.2.165) and compare it with the last model.

X, Y[

Time

Figure (3.2.165): The solution at a=0 with small supports

Here, we make all rates triangular fuzzy numbers, when x(t) and y(t) are (1,1),
(1,2) or (2,1)-differentiable, we obtain unacceptable solutions, but at a = 1 the
solution is the same as the solution of the crisp case. While, when x(t) and y(t)
are (2)-differentiable, the solutions are asymptotically stable but as t — oo we note
that r(t) > s(t) and u(t) > v(t). So, there are no fuzzy solutions for
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x(t)and y(t) but these solutions are acceptable biologically. At o =1, the
solution is the same as the crisp solution. Finally, we try to take a triangular fuzzy
number with very small supports, then the solutions are periodic about the
equilibrium points but r(t) > s(t) and u(t) > v(t) with clear differences.
Therefore, there are no fuzzy solutions for x(t) and y(t).

3.3: Summary

We reviewed an example of the simplest model of predation. We convert the
model to a fuzzy one by fuzzifying the initial conditions and then by fuzzifying the
parameters. We showed the simulations and graphical solutions of models under
generalized Hukuhara derivative through Matlab program using Runge-Kutta
method. We compared these solutions with the crisp one.
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Chapter 4
Fuzzy Predator-Prey Model with a Functional
Response of the Form Arctan(ax)

4.1: Fuzzy Predator-Prey Model with a Functional Response of the
Form Arctan(ax) and Fuzzy Initial Conditions

In [4], the researchers dealt with the general predator prey model of the form
X@®) =rX(1-X)-Y tan"*(aX)
Y'(t) = —=DY + sY tan"1(aX) (66)

where X and Y are the prey and the predator population sizes respectively, such
that r, s ,a and D are positive parameters. Let (x*, y*) be the equilibrium point of

(66), then x* = %tang and y* = w , moreover (0,0) and (1,0). Where

D, s and a are chosen such that 0 < x* < 1. They established the necessary and
sufficient condition for the nonexistence of limit cycles of (66). The system has no
D stan( )—2D[1+tan? ( )l

limit cycle if and only if tan( )[ ( V-plirean Z(D) 1= a[4].

stan( ) 2D[1+tan (D)]

S

s tan( ) D[1+tan2 (D)]

on the existence condition we created the following model:
X'(t) =2X(1 — X) — Y tan"1(5X)
Y'(t) = —-04Y + 0.6 Y tan"1(5X)
Xo=1landy, =1 (67)

The equilibrium points of (67) are (0,0),(1,0) and (0.157369,0.397811). By
Matlab using Runge-Kutta method we find the solution of (67) as in table (4.1.1)
and its graph is figure (4.1.1):

Table (4.1.1): The solution of (67)
Time X(t) Y(t)
0.0000 | 1.0000 | 1.0000
5.0000 | 0.0004 | 0.2800
10.0000 | 0.2536 | 0.0598
15.0000 | 0.7375 | 0.3892

So, if tan(g)

< a then there is a limit cycle. Depending
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20.0000 | 0.0123 | 0.3867
25.0000 | 0.5572 | 0.2186
30.0000 | 0.0359 | 0.6595
35.0000 | 0.1821 | 0.1628
40.0000 | 0.3046 | 0.7312
45.0000 | 0.0441 | 0.1979
50.0000 | 0.6131 | 0.4784
55.0000 | 0.0163 | 0.3125
60.0000 | 0.6503 | 0.2871
65.0000 | 0.0173 | 0.5135
70.0000 | 0.3583 | 0.1827
75.0000 | 0.1017 | 0.7595
80.0000 | 0.0953 | 0.1683
85.0000 | 0.4766 | 0.6195
90.0000 | 0.0258 | 0.2402
95.0000 | 0.6657 | 0.3817
100.0000 | 0.0140 | 0.3900

Xg), YY)

| \ / \ / | I \ | \ / \
F \ o/ \ / \ / V) Vo \
/| S (N s L e N N

Figure (4.1.1): The solution of (67)

We can note that the curves of the solution of (67) are oscillated about the
equilibrium point (0.157369,0.397811). So, it is stable but the other points
(0,0) and (1,0) are unstable.

Now, we want to explore a fuzzy model from model (67). Therefore, we assume
that X (t) and Y (t) are fuzzy numbers with fuzzy initial conditions. Let [X], =
[u,v] and [Y], = [r,s]. And let x, =y, =(0.5,1,1.5) a triangular fuzzy
numbers then [x,], = [yole = [05+7, 1.5 =]

As we did before using the generalized Hukuhara derivatives for X(t) and Y(t), we
let X(t) and Y(t) are (1)-differentiable then [x], = [«/,v']and [y'], = [r',s'].
Then the model will be as follows:
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u' = 2u—2v% —stan 1 (5v)
v =2v—-2u?—rtan"1(5u)
r'=—-04s+0.67tan"1(5u)
s'=—-047r+0.6stan"1(5v)

u0=r0=0.5+% and UO=SO=1.5—% (68)

The equilibrium points of (68) are x(o,0y, X(1,0) And X(0.157369 ,0.397811)-We solve

(68) by Runge-Kutta method in Matlab at @ — levels = 0,0.5,1. At a-level = 0,
the solution is figure (4.1.2):

L I 1 1 | I | 1 1
0 0.05 01 015 02 0.25 03 035 04 0.45 05
Time

Figure (4.1.2): The solution of (68) at a=0

At a-level = 0.5, the solution is figure (4.1.3) in the appendix. At a-level = 1, the
solution is table (4.1.2) and figure (4.1.4):

Table (4.1.2): The solution of (68) at a=1
Time u(t) v(t) r(t) s(t)
0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
5.0000 | 0.0004 | 0.0004 | 0.2800 | 0.2800
10.0000 | 0.2536 | 0.2536 | 0.0598 | 0.0598
15.0000 | 0.7375 | 0.7375 | 0.3892 | 0.3892
20.0000 | 0.0123 | 0.0123 | 0.3867 | 0.3867
25.0000 | 0.5572 | 0.5572 | 0.2186 | 0.2186
30.0000 | 0.0359 | 0.0359 | 0.6595 | 0.6595
35.0000 | 0.1821 | 0.1821 | 0.1628 | 0.1628
40.0000 | 0.3046 | 0.3046 | 0.7312 | 0.7312
45.0000 | 0.0441 | 0.0441 | 0.1979 | 0.1979
50.0000 | 0.6131 | 0.6131 | 0.4784 | 0.4784
55.0000 | 0.0163 | 0.0163 | 0.3125 | 0.3125

117



60.0000 | 0.6503 | 0.6503 | 0.2871 | 0.2871
65.0000 | 0.0173 | 0.0173 | 0.5135 | 0.5135
70.0000 | 0.3583 | 0.3583 | 0.1827 | 0.1827
75.0000 | 0.1017 | 0.1017 | 0.7595 | 0.7595
80.0000 | 0.0953 | 0.0953 | 0.1683 | 0.1683
85.0000 | 0.4766 | 0.4766 | 0.6195 | 0.6195
90.0000 | 0.0258 | 0.0258 | 0.2402 | 0.2402
95.0000 | 0.6657 | 0.6657 | 0.3817 | 0.3817
100.0000 | 0.0140 | 0.0140 | 0.3900 | 0.3900

fl | /I | /I RVARY ;/ \'\ /I \“‘.‘ / \‘L

0 10 20 30 40 50 60 70 80 90 100

Figure (4.1.4): The solution of (68) at a=1

While if X(t) is (1)-differentiable and Y (t) is (2)-differentiable, then we have the
following model:

u' =2u—2v?—stan"1(5v)
v =2v-2u?—rtan (5w
r'=—047r+0.6stan"1(5v)
s'=-04s+0.6rtan"1(5u)

u0=r0=0.5+% and vozsozl.S—% (69)

We solve (69) by Runge-Kutta method in Matlab at « — levels = 0,0.5,1. At a-
level = 0, the solution is figure (4.1.5):
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Figure (4.1.5): The :olution of (69) at a=0

At a-level = 0.5, the solution is figure (4.1.6) in the appendix. At a-level = 1, the
solution is figure (4.1.7):

. B
06 .
0.4 R
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Figure (4.1.7): The solution of (69) at a=1

If X(t) is (2)-differentiable and Y (t) is (1)-differentiable, then we have the
following model:

u =2v-2u?—rtan (5w
v' = 2u—2v? —stan"1(5v)
r'=—-04s+0.6rtan"1(5u)
s'=—-047r+0.6stan"1(5v)

u0=r0=0.5+% and v0=50=1.5—% (70)
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We solve (70) by Runge-Kutta method in Matlab at @ — levels = 0,0.5,1. At a-
level = 0, the solution is figure (4.1.8):

X(t). Yit)

At a-level = 0.5, the solution is figure (4.1.9) in the appendix. At a-level =1, the
solution is figure (4.1.10):

. .
06 [ =
04 i
0z -

0 I I I 1 I I I
0 10 20 30 40 50 60 70 80 90 100

Figure (4.1.10): The solution of (70) at a=1

Now, if X(t) and Y (t) are (2)-differentiable, then we have the following model:

I

Figure (4.1.8): The solution of (70) at a=0

Xit) . Y

u =2v-2u?—rtan 1(5u)
v' = 2u—2v? —stan"1(5v)
r'=—047r+0.6stan"1(5v)
s'=—-04s+0.67tan"1(5u)
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u0=r0=0.5+% and v0=50=1.5—% (71)

We solve (71) by Runge-Kutta method in Matlab at @ — levels = 0,0.5,1. At a-
level = 0, the solution graphs are figure (4.1.11) and figure (4.1.12):

[ I 1 | ! —
2

Figure (4.1.11): The solution 0;(71) at a=0 for short time period

f I“\I |
/ ] / \ \j \/ \I\\_

Figure (4.1.12). The solutlon 0f(71) at =0 as time increases

At a-level = 0.5, the solution graphs are figure (4.1.13) and figure (4.1.14) in the
appendix. At a-level = 1, the solution is figure (4.1.15):
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Figure (4.1. 15) The solutlon of (71) at a=1
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In this section, we create a new model. First, we find the crisp solution which
periodic as t — oo and stable about the equilibrium point (0.157369,0.397811),
but the equilibrium points (0,0) and (1,0) are unstable. Second, we make the
initial conditions triangular fuzzy numbers then we obtain biologically
unacceptable and unstable solution when X(t) and Y (¢t) are (1,1), (1,2) and (2,1)-
differentiable for ¢ < 1. At a = 1 the solution is equivalent to the crisp case.
While, when X(t) and Y(t) are (2)-differentiable, we note that u(t) > v(t) for
very short time period but as t — oo the solution becomes periodic and stable.

Now, we try to use a triangular fuzzy numbers with small supports for the initial
conditions Let xo =y, = (0.9999,1,1.0001) then [x,], = [Vo]4=[0.9999 +
75000 1.0001 — O]. Since the model when X (t) and Y (t) are (2)-differentiable
give a fuzzy solutlon which is biologically acceptable we find the solution of
X(t) and Y (t) when they are (2)-differentiable at a — level = 0. Therefore, we
have the following model:

u =2v-2u?—rtan (5w
v' =2u—2v?—stan 1 (5v)
r'=—-04r+0.6stan"1(5v)
s'=-045s5+0.67tan"1(5u)
(72)

Uy =75 = 0.9999 + —— and v, = s, = 1.0001 —
10000 10000

The solution graphs are figures (4.1.16) and (4.1.17):
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Figure (4.1.16): The solution of (72) at a=0 for short time period
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Figure (4.1.17): The solution é)f (72) at a=0 as time increases

We can note that initially v(t) > u(t) and s(t) > r(t) but as t — oo the solution
become periodic and stable with v(t) = u(t) and s(t) = r(t). So, the solution of
(72) is better than the previous one using initial conditions with large supports.

4.2: Fuzzy Predator-Prey Model with a Functional Response of the
Form Arctan(ax) and Fuzzy Parameters

For first time we want to make the parameters of the model (67) triangular fuzzy
numbers. For example, we let r=(1,23)with[r],=[1+a,3—al,a=
(4,5,6)with[a], =4+ a,6 — ] = (0.2,0.4,0.6) with [D], = [O. 2+E 0.6 —

%] and s = (0.4,0.6,0.8) with [s [04+— 08——] Then (67) will be as

follow:
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x () = (1,23)x(1-x) - Ytan_l((4,5,6)X)

Y'(t) = —(0.2,0.4,0.6) Y + (0.4,0.6,0.8) Y tan~1(5X)
Xg = (05 ) 1 ) 15) and Vo = (05 ) 1 ) 15)

If X(t) and Y (¢t) are (1)-differentiable, then we have the following model:

u'=0+a)u— GB—a)v?—stan 1((6 — a)v)
vV'=0B-a)v— 1+ a)u®—rtan 1((4 + a) u)

a a
r' =—(0.6 — E)S + (0.4 + E)r tan"1((4 + a)u)

a a
s'=—(0.2+ g)r + (0.8 — E)S tan"1((6 — a)v)

a

u0=T'0=05+%and v0250=1.5—2

(73)

(74)

The equilibrium points of (74) are x(o,0), X(1,0)-We solve this model numerically by

Matlab at 0=0,0.5,1. At a-level = 0, the solution is figure (4.2.1):

Xy, Ye)
IS
e

Figure (4.2.1): The solution of (74) at a=0

At a-level = 0.5, the solution is figure (4.2.2) in the appendix. At a-level = 1, the

solution is table (4.2.1), where its graph is figure (4.2.3):
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Table (4.2.1): The solution of (74) at a=1

Time u(t) v(t) r(t) s(t)
0.0000 1.0000 1.0000 1.0000 1.0000
5.0000 0.0004 | 0.0004 | 0.2800 | 0.2800
10.0000 | 0.2536 | 0.2536 | 0.0598 | 0.0598
15.0000 | 0.7375 | 0.7375 | 0.3892 | 0.3892
20.0000 | 0.0123 0.0123 | 0.3867 | 0.3867
25.0000 | 0.5572 | 0.5572 | 0.2186 | 0.2186
30.0000 | 0.0359 | 0.0359 | 0.6595 | 0.6595
35.0000 | 0.1821 | 0.1821 | 0.1628 | 0.1628
40.0000 | 0.3046 | 0.3046 | 0.7312 | 0.7312
45.0000 | 0.0441 0.0441 0.1979 0.1979
50.0000 | 0.6131 | 0.6131 | 0.4784 | 0.4784
55.0000 | 0.0163 0.0163 | 0.3125 | 0.3125
60.0000 | 0.6503 0.6503 | 0.2871 | 0.2871
65.0000 | 0.0173 0.0173 | 0.5135 | 0.5135
70.0000 | 0.3583 0.3583 | 0.1827 | 0.1827
75.0000 | 0.1017 | 0.1017 | 0.7595 | 0.7595
80.0000 | 0.0953 0.0953 | 0.1683 | 0.1683
85.0000 | 0.4766 | 0.4766 | 0.6195 | 0.6195
90.0000 | 0.0258 | 0.0258 | 0.2402 | 0.2402
95.0000 | 0.6657 | 0.6657 | 0.3817 | 0.3817
100.0000 | 0.0140 | 0.0140 | 0.3900 | 0.3900
\/\\\ i
PNV A ) / VA A
VAR A
,'//'."/,/'/
‘u /}‘ \\M,/ ‘L/ ‘\L/ , "\;_/ “‘L/ \/ “L/ \
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Figure (4.2.3): Thergolution of (74) at a=1

If X(t) is (1)-differentiable and Y (t) is (2)-differentiable, then we have the

following model:

1+ a)u— (3 —a)v?—stan 1((6 — a)v)
B-av—A+a)u?>—rtan (4 + a)w)

—(0.2 + %)r + (0.8 — %)s tan"1((6 — a)v)
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s'=—(0.6 — %)s + (0.4 + %)r tan”1((4 + )

u0=r0=0.5+% and vozsozl.S—% (75)

We solve (75) by Matlab at @« = 0,0.5,1. At a-level = 0, the solution is figure
(4.2.4):

Figure (4.2.4): The solution of (75) at =0

At a-level = 0.5, the solution is figure (4.2.5) in the appendix. At a-level =1, the
solution is figure (4.2.6):

b .
06+ -
0.4 -
0.2 -

0 1 I L L L I 1
0 10 20 30 a0 50 60 70 80 20 100

Figure (4.2.6): The golution of (75) at a=1

X, Y

If X(t) is (2)-differentiable and Y(t) is (1)-differentiable, then we have the
following model:
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u=0CB-a)v— 1+ a)u®—rtan 1 ((4 + a) u)

~

a a
r' = —(0.6 — E)S + (0.4 + E)r tan 1 ((4 + a)u)
a a
s'=—(0.2+ g)r + (0.8 — E)S tan 1((6 — a)v)

u0=r0=0.5+% and vy = sy = 15—

v'=>0+a)u— 3 —a)v?—stan 1((6 — a)v)

a
2

(76)

We solve (76) using Matlab at & = 0,0.5,1. At a-level = 0, the solution is table
(4.2.2), where its graph is figure (4.2.7):

Table (4.2.2): The solution of (76) at o=0

Time u(t) v(t) r(t) s(t)
0.0000 | 0.5000 1.5000 0.5000 1.5000
0.5000 | 0.8420 | 0.1187 -0.0132 2.3504
1.0000 | 0.8739 | 0.0532 -0.8914 2.7674
1.5000 1.3734 | 0.0693 -2.2041 3.3358
2.0000 2.1710 0.0888 -4.2409 4.3304
2.5000 | 3.0778 | 0.0942 -7.4537 5.9350
3.0000 | 4.1125 | 0.0893 -12.5130 8.3406
3.5000 | 5.3515 | 0.0809 -20.4190 11.8410
4.0000 | 6.8573 | 0.0717 -32.6690 16.8830
4.5000 | 8.6924 | 0.0628 -51.5010 24.1250
5.0000 | 10.9300 | 0.0546 -80.2540 34.5240
5.5000 | 13.6560 | 0.0472 -123.9100 49.4840
6.0000 | 16.9780 | 0.0406 -189.8600 71.0550
6.5000 | 21.0220 | 0.0348 -289.1400 | 102.2500
7.0000 | 25.9450 | 0.0296 -438.0700 | 147.4700
7.5000 | 31.9350 | 0.0251 -660.9100 | 213.2100
8.0000 | 39.2230 | 0.0213 -993.6100 | 309.0200
8.5000 | 48.0880 | 0.0179 | -1489.5000 | 448.9400
9.0000 | 58.8690 | 0.0151 | -2227.4000 | 653.6700
9.5000 | 71.9810 | 0.0126 | -3324.2000 | 953.7300
10.0000 | 87.9260 | 0.0105 | -4953.0000 | 1394.1000
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Figure (4.2.7): The solution of (76) at a=0

At a-level = 0.5, the solution is figure (4.2.8) in the appendix. At a-level = 1, the
solution is figure (4.2.9):

AT

Figure (4.2.9): The SEO|U'[I0I’\ of(76) at o=1

If X(t) and Y (¢t) are (2)-differentiable, then we have the following model:
u=0CB-a)v— 1+ a)u?—rtan 1 ((4 + a) u)
v'=_0+a)u— 3—-a)v?—stan 1((6 — a)v)

a a

r'=—(0.2+ E)T + (0.8 — E)S tan~1((6 — a)v)
a a

= —(0.6 — E)S + (0.4 + g)r tan"1((4 + a)u)

u0=7'0=0.5+% and v0=50:1.5_% (77)
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We solve model (77) by Matlab at « = 0,0.5,1. At a-level = 0, the solution graphs
are figure (4.2.10), figure (4.2.11) and figure (4.2.12):

X{t). ()

X(). Yt

Figures (4.2.11) and (4.2.12): The solution of (77) at a=0 as time increases
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At o-level = 0, the solution is unstable since ast — oo, u(t) - 0.1744,v(t)

0.1179,r(t) - 0.5308 and s(t) — 0.2155.
0.5, the solution graphs are figure (4.2.13) and figure (4.2.14) in the

At a-level =
appendix. At a-level = 1, the solution is figure (4.2.15):

—

| I \'x s’ ‘\ / | | Ry | /|
|/ / ‘x / | RVA / !
| K$/ ] // \/ WA\

AL
Figure (4 2. 15) The solutlon of (77) at a=1
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Now, we want to fuzzify the parameters of the model (67) using triangular fuzzy

numbers with small support. As follow:

let r = (1.9995,2,2.0005) with [ 1.9995 + —,2.0005 — ——|,

a = (4.9995,5,5.0005) with [a 4.9995 + 2500 5 0005 — m

— (0.3995,0.4,0.4005) with [D [0 3995 + ——,0.4005 — ]
20000

~

s = (0.5995,0.6,0.6005) with [s], = 0 5995 *t 2500 0 6005 — m

xo = (0.9995,1,1.0005) with [x,], = 0 9995 *t 2500 1 0005 — m

~

Yo = (0.9995,1,1.0005) with [y,], = 0 9995 * 2500 ,1.0005 — m ’

Then we have the following model:
X'(t) = (1.9995,2,2.0005)X(1 — X) —
Y'(t) = —(0.3995,0.4,0.4005) Y + (0.5995,0.6,0.6005) Y tan™1(5X)

x, = (0.9995,1,1.0005) and y, = (0.9995,1,1.0005)

Y tan™1((4.9995,5,5.0005)X)

(78)
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We solves model (78) when X(t) and Y (t) are (2)-differentiable, then it becomes

as follow:

u' = (2.0005 —
v' = (1.9995 +
r' = —(0.3995 +

s’ = —(0.4005 —

Uy =15 = 0.9995 + — and vy = 5, = 1.0005 — —
2000 2000

— (1.9995 tan~" ((4.9995
2000)” ( 2000’ Tt (¢ * 2000) u)
— — — 1 —
2000)u (2.0005 2000)17 s tan™"((5.0005 2000)17)
- tan=1((5.0005 —
2000)’”+ (0.6005 2000)5 an=(( 2000)”)

1
)r tan™*((4.9995 + ZOOO)u)

Y s+ (05995 +

2000 2000

(79)

We solve (79) by Runge-Kutta method in Matlab at a-levels= 0. The solution
graphs are figure (4.2.16) and figure (4.2.17):

[E—— =

X(t). ()
°

Figure (4.2.16): The solution of (79) at a=0 for short time period
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Figure (4.2.17): The solutlon 0f(79) at o=0 as time increases
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When we make the parameters of (67) triangular fuzzy numbers and for a < 1 we
obtain unacceptable solution when X(t) and Y(t) are (1,1), (1,2) and (2,1)-
differentiable. While, when X(t) and Y (t) are (2)-differentiable, the solution is
unstable at « = 0 but it becomes periodic as a increases for a < 1 with u(t) >
v(t) and r(t) > s(t). So, there are no fuzzy solution for X(t) and Y (t). However,
at a = 1 the solution is equivalent to the crisp case for all derivatives forms of
X(t) and Y (t). Then we use triangular fuzzy numbers of small supports to fuzzify
the parameters and the initial conditions. Thereafter, we find the solution when
X(t) and Y (t) are (2)-differentiable at « = 0, then we obtain periodic and stable
solution. Therefore, ast — oo, r(t) > s(t) so there is no fuzzy solution for Y (t).

4.3: summery

In this chapter, we created a new numerical model of predator-prey model with a
functional response of the form arctan(ax) and presented the solutions
numerically and graphically. Then we converted the initial conditions to fuzzy
numbers using triangular fuzzy numbers and triangular fuzzy numbers of small
support. Thereafter, we explored a new fuzzy model with functional response
arctan(X) with fuzzy parameters and initial conditions compared this model with
another one of triangular fuzzy numbers with small supports.

132



Chapter 5
Conclusions and Comments

We covered the topic of predator prey model and solved it numerically using
Runge-Kutta method and got periodic solutions and stable equilibrium points. As
vagueness appears in problems which are analyzed, it is natural to use fuzzy
differential equations. Therefore, using fuzzy sets is more realistic than the
classical one. From the simulations and graphs of the solutions, we noted that the
fuzzy solution is not always better than the crisp solution because the cases of
derivatives of the forms (1,1), (1,2), (2,1) gave solutions that are incompatible with
biological facts, while solutions obtained with (2,2) derivatives are biologically
meaningful. In section 3.1 we had different initial populations of prey and predator
using different cases of fuzzy numbers. We got different results at each time with
derivatives of the form (2,2) but the solution with triangular and triangular shaped
fuzzy numbers was better than the trapezoidal fuzzy numbers and as the initial
populations of the prey and predator were closer to each other, the solution was
better, that is the lower and upper bounds were equal and positive.

When we fuzzify the parameters of predator-prey model, in some cases we didn’t
get fuzzy solution, but these solutions were biologically acceptable only with
derivatives form (2,2). However, the triangular and triangular shaped fuzzy
numbers produced better solutions than the trapezoidal fuzzy numbers.
Furthermore, as the endpoints of fuzzy numbers were closer to the core, the
solution was closer to the crisp case and the equilibrium points were stable.

For the predator prey model with functional response arctan(ax), we considered
a numerical model that satisfies the existence condition then the solution was
periodic as t — oo and the equilibrium points were stable. When we converted the
initial conditions to triangular fuzzy numbers we obtained the same results; that is,
derivatives of the form (1,1), (1,2), (2,1) gave biologically unacceptable solutions
but derivatives of the form (2,2) gave periodic solution and it was better with
smaller supports of triangular fuzzy numbers. While, when we explored fuzzy
model with fuzzy parameters, we didn’t obtain a good solution and it wasn’t
acceptable with fuzzy logic.

133



References

[1] M.Z. Ahmad and B. Baets (2009). A Predator-Prey Model with Fuzzy Initial
Populations, 13th IFSA World Congress and 6th EUSFLAT Conference, 1311-
1314,

[2] M.Z. Ahmad and M.K. Hasan (2012). Modeling of Biological Populations
Using Fuzzy Differential Equations, International Journal of Modern Physic:
Conference Series, Vol. 9, 354-363.

[3] Omer Akin and Omer Oruc (2012). A Prey Predator Model with Fuzzy Initial
Values, Hacettepe Journal of Mathematics and Statistics, 41(3) 387-395.

[4] B. Attili and S. Mallak (2006). Existence of Limit Cycles in A Predator-Prey
System with a Functional Responce of the Form Arctan(ax), Communications in
Mathematical Analysis, No.1, 27-33.

[5] B. Bede and S.G. Gal. (2005). Generalizations of differentiability of fuzzy
number valued functions with applications to fuzzy differential equations. Fuzzy
sets and systems,151, 581-599.

[6] B. Bede and S.G. Gal. (2010). Solutions of fuzzy differential equations based
on generalized differentiability. Communications in mathematical analysis.pp.22-
41,

[7] B. Bede and L. Stefanini. (2011). Solution of fuzzy differential equations with
generalized differentiability using LU-parametric representation. Atlantis Press.
France.

[8] B. Bede and L. Stefanini. (2012). Some notes on generalized Hukuhara
differentiability of interval- valued functions and interval differential equations,
Working Paper, University of Urbino. Available online at the RePEc repository,
http://ideas.repec.org/f/pst233.html.

[9] B. Bede and L. Stefanini. (2012). Generalized differentiability of fuzzy-valued
function. Fuzzy sets and systems, 230, 119-141.

[10] W.E. Boyee and R.C. Diprima (1977). Elementary Differential Equations and
Boundary Value Problems, 3rd Edition, John Wiley and Sons.

[11] Y.C. Cano and H.R. Flores. (2008). On new solutions of fuzzy differential
equations. Chaos, solutions and fractals 38,112-1109.

134


http://ideas.repec.org/f/pst233.html
http://ideas.repec.org/f/pst233.html

[12] A. S. Dadgostar (1996). A Decentralized Reactive Fuzzy Scheduling System
for Cellular Manufacturing Systems, Ph. D. Thesis, University of South Wales,
Australia.

[13] Z.A. Ghanaie and M.M. Moghadam. (2011). Solving fuzzy differential
equations by Runge-Kutta method. The journal of mathematics and computer
science, No.2, 295-306.

[14] F.R. Giordano, W.P. Fox and S.B. Horton. (2013). A First course in
mathematical modeling, fifth edition. Brooks/cole, cengage learning. Boston, USA.

[15] L.T. Gomes, On Fuzzy Differential Equations (2014). Ph. D Thesis,
University of Campinas.

[16] L.T. Gomes and L.C. Barros. (2015). A note on the generalized difference and
the generalized differentiability. Fuzzy Sets and Systems, 280, 142-145.

[17] O. Kaleva, Fuzzy Differential Equations (1987). Fuzzy Sets and Systems,
24:301-324.

[18] A. Kandel and W. Byatt (1980). Fuzzy Processes, Fuzzy Sets and Systems, 4
117-152.

[19] A. Kaufmann and M. M. Gupta (1991). Introduction to Fuzzy Arithmetic:
Theory and Applications, Van Nostrand Reinhold, New York.

[20] G. K. Klir and B. Yuan (1995). Fuzzy Sets and Fuzzy Logic, Theory and
applications, (Prentice Hall, New Jersey).

[21] M. Ma, M. Friedman and A. kandel. (1999). Numerical solutions of fuzzy
differential equations. Fuzzy sets and systems ,105, 133-138.

[22] S. Mallak and D. Bedo, (2013), A Fuzzy Comparison Method for Particular
Fuzzy Numbers, Journal of Mahani Mathematical Research Center (JMMRC),
ISSN 2251-7952, No. 1, pp.1-14

[23] S. Mallak and D. Bedo, (2013), Particular Fuzzy Numbers and a Fuzzy
Comparison Method between Them, International Journal of Fuzzy Mathematics
and Systems (IJFMS), ISSN 2248-9940, No. 2, pp.113-123

[24] M.T. Mizukoshi, L.C. Barros and R.C. Bassanezi (2009). Stability of Fuzzy
Dynamic Systems, Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 17,69-83.

[25] H. Moore. (2012). Matlab for engineers third edition, PEAREON.

135



[26] H.S. Najafi, F.R. Sasemasi, S.S. Roudkoli and S.F. Nodehi. (2011).
Comparison of two methods for solving fuzzy differential equations based on Euler

method and Zadeh’s extension. The journal of mathematics and computer science
No.2, 295-306.

[27] N.R.S. Ortega, P.C. Sallum and E. Massad (2000). Fuzzy Dynamical Systems
in Epidemic Modeling, Kybernetes 29,201.

[28] M.S. Peixoto, L.C. Barros and R.C. Bassanezi (2008). Predator-Prey Fuzzy
Model, Ecol. Model 214, 39-44.

[29] U.M. Pirzada and D.C. Vakaskar. (2017). Existence of Hukuhara
differentiability of fuzzy-valued functions. Journal of the Indian Math, 84, 239-
254.

[30] M. Puri and D. Ralescu (1983). Differentials of Fuzzy Functions, J. Math.
Anal. Appl., 91: 552-558.

[31] L. Stefanini. (2008). A generalization of Hukuhara difference for interval and
fuzzy arithmetic. Fuzzy Sets and System, 161, 1564-1584,

[32] Trophic Links: Predation and Parasitism,
https://globalchange.umich.edu/globalchangel/current/lectures/predation/predation
htmi

[33] L. A. Zadeh, Fuzzy Sets (1965). Information and Control, 8 :338-353.

[34] L.A. Zadeh (1968). Probability Measures of Fuzzy Events, Journal of
Mathematical Analysis and Applications, 23 :421-427.

[35] H. J. Zimmerman (2006). Fuzzy Set Theory and its Applications 4" edition.
Kluwer Academic Publishers, Boston/Dordrecht/London.

136



Appendix

Figure (3.1.20): The solution of (11) at a=0.5

Figure (3.1.23): The solution of (12) at 0=0.5

100~

Xd), YD)

Figure (3.1.26): The solution of (13) at a=0.5
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Figure (3.1.34): The solution of (15) at a=0.5
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Figure (3.1.37): The smolution of (16) at 0=0.5
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Figure (3.1.40): The solution of (17) at a=0.5
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Figure (3.1.44): The solution ofm(18) at a=0.5 for short time period
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Figure (3.1.48): The solution of (19) at a=0.5

-200

05 1 15 2 25 3 35 4 45

Figure (3.1.51): The solution of (20) at a=0.5
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Figure (3.1.54): The solution of (21) at 0=0.5
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Figure (3.1.58): The solution ofm(22) at a=0.5 for short time period
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Figure (3.1.59): The solution of (22) at a=0.5 as time increases
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Figure (3.2.2): The solution of'(23) at a=0.5

05 1 15 2 25 3 35 4

Figure (3.2.5): The sgelution of (24) at a=0.5

45
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Figure (3.2.8): The solution of (25) at a=0.5




X{). Y

Figure (3.2.13): The solution 0f?26) at a=0.5 for short time period

X(t), Y

00000

At o-level = 05, ast > o, u—> 4742 ,v > 33.74,r - 29.64 , s -» 35.14 .
Therefore, the solution of y(t) is asymptotically stable but there is no fuzzy
solution for x(t).
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Figure (3.2.18): The smolution of (27) at 0=0.5

Figure (3.2.21): The solution of (28) at a=0.5

Figure (3.2.24): The solution of (29) at a=0.5
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Figure (3.2.29): The solution ofm(ES’O) at a=0.5 for short time period

X, Y

Figures (3.2.30) and (3.2.31): The solution of (30) at a=0.5 as time increases

At a-level =0.5, ast = oo, u(t) = 65.21,v(t) = 24.53,r(t) —» 20.38 , s(t) =

33.22. So the solution is asymptotically stable.
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Figure (3.2.38): The solution of (35) at a=0.5

X{), Yit)

Figure (3.2.44): The solution of (37) at a=0.5
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X(t). Y(t)

150

Figures (3.2.49) and (3.2.50): The solution of (38) at a=0.5 as time increases

At a-level = 0.5, the solution is asymptotically stable for Y(t) since ast —
o, u(t) - 50.40,v(t) » 31.75,r(t) - 31.50, s(t) - 39.68. As we see there

Is no fuzzy solution for X(t).
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-2000 —

Figure (3.2.53): The solution of (39) at a=0.5

Figure (3.2.56): The solution of (40) at a=0.5

Figure (3.2.59): The solution of (41) at 0=0.5
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Figures (3.2.64) and (3.2.65): The solution of (42) at a=0.5 as time increases

ast — oo, u(t) » 50.40,v(t) » 31.76,r(t) » 31.50 and s(t) — 39.69. So the
solution is asymptotically stable but there is no fuzzy solution for X (t).
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Figure (3.2.75): The solution of (45) at a=0.5
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Figure (3.2.78): The solution of (46) at a=0.5
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Figure (3.2.81): The solution of (47) at a=0.5
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Figure (3.2.86): The solution ofm(e48) at a=0.5 for short time period
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Figures (3.2.87) and (3.2.88): The SOWI“thion of (48) at a=0.5 as time increases

At a-level = 0.5, the solution is asymptotically stable since ast — oo, u(t) -
38.06,v(t) — 41.38,r(t) - 36.25, s(t) — 30.66. However, there is no fuzzy
solution for Y (¢t).
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Figure (3.2.91): The solution of (49) at a=0.5

Figure (3.2.94): The solution of (50) at 0=0.5

Figure (3.2.97): The solution of (51) at a=0.5

152



Xtt). Yiy)

1
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Figure (3.2.102): The solution of (52) at a=0.5 for short time period

Figures (3.2.103) and (3.2.104): The solution of (52) at a=0.5 as time increases

At a-level = 0.5, the solution is asymptotically stable and there is no fuzzy solution
forY(t) sinceast — oo, u(t) -» 35.57,v(t) » 42.17,r(t) - 39.52 and s(t) -

28.11.
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Figure (3.2.113): The solution of (53) at a=0.5
Figure (3.2.116): The solution of (54) at a=0.5
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Figure (3.2.119): The solution of (55) at a=0.5
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Figure (3.2.124): The solution of (56) at a=0.5 for short time period

Xm. Y

il )

Figures (3.2.125) and (3.2.126): The solution of (56) at a=0.5 as time increases

At a-level = 0.5, the solution is asymptotically stable and there is no fuzzy solution
for Y(t) since ast — oo, u(t) - 37.94,v(t) - 44.98,r(t) - 39.52, s(t) »

28.11.
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Figure (3.2.129): The solution of (57) at a=0.5
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Figure (3.2.132): The solution of (58) at a=0.5
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Figure (3.2.135): The solution of (59) at a=0.5
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Figure (3.2.140): The solution of (60) at a=0.5 for short time period

Xy, Y1)

Time

Figures (3.2.141) and (3.2.142): The sglution 0f (60) at a=0.5 as time increases

At a-level = 0.5, the solution is asymptotically stable and there is no fuzzy solution
for Y(t) since ast — oo, u(t) » 38.46,v(t) » 55.47,r(t) » 48.08, s(t) —

23.11.

157



Xy, Y()
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Figure (3.2.151): The solution of (62) at a=0.5

Figure (3.2.154): The solution of (63) at a=0.5

Figure (3.2.157): The solution of (64) at a=0.5
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Figure (3.2.161): The solution of (65) at a=0.5 for short time period
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Figure (3.2.162) and figure (3.2.163;2: The solution of (65) at a=0.5 as time

increases

At a-level = 0.5, The solution is asymptotically stable but there are no fuzzy
ast » oo, u(t) » 53.92,v(t) —»

solutions  for  X(t) and Y (t).

Since

31.16,7(t) - 36.11, s(t) — 32.45.
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Figure (4.1.3): The solution of (68) at a=0.5
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Figure (4.1.9): The solution of (70) at a=0.5
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Figure (4.2.2): The solution of (74) at a=0.5
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Figure (4.2.5): The gglution of (75) at a=0.5
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Figure (4.2.8): The solution of (76) at a=0.5

Figure (4.2.13): The solution of (77) at a=0.5 for short time period
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Figure (4.2.14): The solution g}(77) at a=0.5 as time increases

The following code is the general code used to find the simulations and the
graphical solutions for each system of ODE in this thesis.

$Here u=y (1), v=y(2), r=y(3), s=y(4)

f1 = Q(t,y) [egl;eq2;eq3; eq4d];

$tf is the final time

tf=x;

$T i1is the time interval, and Y is the solutions matrix
[T,Y] = oded5(f1, [0 x1, [Ug, Vo, Ty, Sol)

$We plot the solutions
plot(T,Y(:,1),'x",T,Y(:,2),"'",T,Y(:,3),"'k",T,Y(:,4),"'9g
")

ylabel ("X (t) , Y(t)")

xlabel ("Time")

legend('u','v','r'","'s")

legend ('Location', 'northeastoutside"')
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