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(On the oscillation of certain discrete fractional

difference equations with delay)

ABSTRACT

In this thesis we employ the properties of left nabla Caputo difference operator
and the discrete nabla Laplace transform on hZ, to investigate the oscillatory
behavior of solutions for two classes of fractional delay difference equations.
The first one is with one positive coefficient and the second one is with two
positive coefficients. Besides we give generalization for the two classes and
study their oscillatory patterns. We show that the solutions act oscillatory if
certain characteristic equations have not real roots. By applying the
Q —operator, we prove the oscillatory for right nabla Caputo difference. Finally,
two classical real life mathematical models on delay differential equations are

applied to present our new results.

Keywords: Oscillatory solution, Fractional delay differential equation,

Fractional difference operators, Fractional delay difference equation.
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CHAPTER 1

INTRODUCTION

1.1 Background

Differential equations with time delays are used to model real life phenomena
related with the past states of these phenomena. The greatest use of delay
differential equations (DDES) is in the modeling of population dynamics. It is
also used in chemical processes, economics, biosciences, technical processes
and many other branches [17 and 25]. Many researchers focus on the study of

oscillation for delay differential equations [20, 26 and 53].

Fractional calculus has received wide attention in the past decades, this is
because of its importance in many branches of engineering and science [23, 24,

41] and in physics [32 and 49].

Fractional delay differential equations (FDDESs) are obtained by the combination
of fractional derivative and time delay. There are many articles on the oscillation
of FDDEs. Sufficient and necessary conditions for the oscillation of FDDEs

with negative and positive coefficient were established [30, 47 and 52].

Discrete fractional differences and sums were developing in the last twenty
years by many researchers in several fields of engineering and science. This
kind of calculus has an important role in modeling many problems, this is due to

the simplicity of the numerical algorithms [1, 3,4 and 8]. The researchers started



using discrete operators as nabla and delta investigation by employing the
forward and backward jumping operators on the time scale Z [2, 13, 21, 33 and
34]. On the other hand, few researchers studied discrete delta and nabla
fractional operators on hZ [14, 28, 38, and 44]. With best of our knowledge,
there is no study on the oscillation for solutions of fractional delay difference

equations.
1.2 Objectives of the Thesis

Our main aim in this thesis is to state and prove sufficient conditions for the
oscillatory of two main classes of fractional delay difference equations on the
left and right nabla Caputo h —fractional difference operators. Moreover, we
provide numerical algorithms and examples to illustrate our main theoretical

results.
1.3 Research Questions

Consider the fractional delay differential equation (FDDE) with positive

coefficient of the form
0“Dz(t)+pz(t-7)=0 (1.1)
such that O<a <1 and p,z>0

with the initial condition

Z({t)=opt), forte[-r,0] (1.2)



where @(t) € C[—1, 0], C is the space of all real-valued continuous functions

on the interval [—z, 0].

Also consider the FDDE with two positive coefficients of the form
o°Dfz(t)+pz(t-7)+qz(t)=0, t>0, (1.3)
such that p, g € R,
with the initial condition
zZ(t)=pt), forte[-r0] (1.4)
where ¢(t) € C[—7,0]

P. Zhu and Q. Xiang in 2018 provided sufficient conditions for the oscillation of
solutions of (1.1) and (1.3), [54]. In our thesis we will answer three research

questions.

1- How can we use recent difference operators to discretize the fractional
derivative in equations (1.1) and (1.3) and generalize them by using nabla

Caputo h —fractional difference operator?

2- How can we state and prove conditions for the oscillation of solutions of the

resulted difference equations?

3- How we will apply our results in mathematical models related to fractional

delay differential equations?



1.4 Structure of the thesis

This thesis is organized as follows. In the next chapter, we recall some basic
concepts about differential equations with time delay and present some results
related to the basic oscillation theory of the first order linear delay differential

equations.

Chapter 3 contains definitions of The Riemann-Liouville (RL) fractional
derivative and fractional integral, together with some properties and examples.

The relation between RL and Caputo fractional derivative is also given.

In Chapter 4 we collect theorems and criteria on the oscillations of fractional

delay differential equations (FDDES).
In Chapter 5, we review nabla and delta differences and sums on the time scale

hZ., and their properties. The relation between Caputo fractional left nabla and
delta and right ones is also given.

The core of the thesis is presented in Chapter 6. We establish sufficient
conditions for the oscillation of two classes of fractional delay difference

equations with Caputo fractional derivative. We provide numerical algorithms

and examples to demonstrate our theoretical results.

In the last chapter, we apply our results on two classical realistic models.



1.5. Literature Review

A. Elbert and I. Stavroulak [26] established oscillation and non-oscillation

criteria for the first-order delay differential equation of the form
z'(t)+pM)z (z(t)) =0 (1.5)
suchthat t >t, and z(t) <t . In this case the oscillation condition is

t 1 t 1
j p(s)ds>= and lim j p(s)ds ==
7(t) e t—)ooT(t) e

G. Li introduced a new technique to investigate the generalized characteristic
equations and obtain some infinite integral conditions for oscillatory of the non-

autonomous delay differential equations [43].

P. Zhu and Q. Xiang studied the oscillation behavior of fractional delay

differential equations of the form,
0“Dz(t)+pz(t-7)=0 (1.6)

where O<a <1 and p,7z>0. They proved the oscillation for FDDEs when the
associated characteristic equations have no zeros in R. So using system

parameters they gave direct oscillation rules [54].

The work of Q. Meng, Z. Jin, and G. Liu [46] is devoted to study the linear

FDDEs of the form

0“Dz(t)-pz(t—-7)=0 (1.7)

5



such that O<a <1 be the quotient of two odd natural numbersand p,z>0.

They obtained the conclusion

pars %,
e

Is a sufficient condition of the for all solutions of equation (1.7) to behave

oscillatory.

B. Zhang and X. Deng [53] considered the delay differential equation of the

form,
z'(t)+pt)z (z(t))=0 (1.5)

and they applied the theory of measure chains to analyze the oscillation and non-

oscillation of equation (1.5) on the basis of some well-known results.

S. Grace, et al. initiated the oscillation theory for fractional differential equations
[30]. They obtained oscillation criteria for a class of nonlinear fractional

differential equations of the form
DSz +f,(t,z)=v(t)+f,(t,z) (1.8)

limJ . “z (t)=b,, where D? denotes the Riemann-Liouville (RL) differential

t—at

operator of ordera, O<a <1 and ji-« is the Riemann-Liouville fractional

integral operator [30].



T. Abdeljawad studied fractional derivatives with singular kernels on the time
scale hZ. He defined fractional derivatives having nonsingular exponential
kernels and Mittag-Leffler on the time scale hZ and investigated some of their
properties. Some dual identities between left and right and delta and nabla, right

and left h —fractional difference types were explored [9].

T. Abdeljawad, et al. explained the action of the discrete h —Laplace transform

and its convolution theorem on the fractional proportional operators [11].

T. Abdeljawad, et al. presented a new type of fractional differences and sums
called the discrete weighted fractional operators. Then they defined the weighted
forward and backward difference operators on an isolated time scale with

arbitrary step size and obeyed them the power rule [10].



CHAPTER 2

Preliminaries

2.1 Delay Differential Equation (DDE)

We study delay differential equations because so many of the processes, both
manmade and natural, in chemistry, biology, physics, medicine, economics,
engineering, etc., involve time delays. Time delays occur so often, in almost

every situation, so if we ignore them that means we ignore the reality [42].

Our aim in this chapter is to present some basic definitions and results related to
the basic oscillation theory of the first order linear delay differential equation

with constant delays and with constant and variable coefficients.

Definition 2.1: [22] A differential equation in which the derivatives of some
unknown function at present time is dependent on the values of the functions at

past times is called Delay Differential Equation (DDE). Mathematically, a

general DDE for z (t) R takes the form,
z't)=f (t,z(t —7)),
where 7>0.

Definition 2.2: [31] The function z (t) is called exponentially bounded, if there

exist positive constants L and £, where |z(t)| < Left fort >0

Theorem 2.1: [31] Consider the first order (DDE)

8



z2't)+pz(t—7z)=0, for t >0 and p,z>0 (2.1)
where the initial function is
z(t)=¢(t) for ¢(t):[-7,0] >R (2.2)
If z(t) is a solution of equation (2.1) on [0,%) then there exists positive
constants L and S, where |z (t)|<Le” fort >0 (2.3)
S0, every solution of (2.1) is exponentially bounded.

Definition 2.3: [31] Let z (t):[0,0) > R be a function. The Laplace transform

of z (t) isdenoted by L[z (t)] or Z (s), and is given by
Z(s)= Te Sz (t)dt (2.4)

The integral 2.4 behave in three ways as the following:

I. itconverges for all s € R.
Ii. itdivergesforall s € R.
iii.  there exists g, € R where the integral in 2.4 is convergent for all s with

Re(s) > g, and diverges for all s with Re(s) < gy.

When (iii) is satisfied, the number g, is called the abscissa of convergence of

Z(S). So, gy = inf {o € R: Z(0) exists}.

For example, the abscissa of convergence of the Laplace transforms of the

. 2. . 2,
functionse™t" is — oo, e3tis3 and el is x.

9



Example 2.1: The abscissa of convergence of the Laplace transform of the

function f(t) = e3t is 3.

Solution: For s # 3, L(e%) = [~ e te3dr = [~ es*t gt

=[° e~ gt

= lim,_, o fob o (-S+3)t gt

3 b
e( s+3)t

- I}I—g}o —(s—=3)

0

1 . —(5—
= —lim,, e [1 —e™¢7¥7]

S_

- f > 3
_ { 3 ors
Divergent fors < 3

So the abscissa of convergence is 3.

Lemma 2.1. [31] Let z € C[0,o)and z(t) satisfies (2.3), the abscissa of
convergence o, of Z(s) of z(t) satisfies o,<f andZ(s) exists for
Re(s) > a,.

The following two lemmas shows that the Laplace transform of the shift

function z (t — ) and of the derivative has the same abscissa of convergence.

Lemma 2.2: [31] Let z € C[—7, ) and let o, <o, then the Laplace transform
of the shift function z (t —z) is given by

10



L[zt —2)]=eZ(s) +e™ T e~z (t)dt (2.5)

for all Re(s) > o,.

Lemma 2.3: [31] Let z € C1[0, ) , where C[0, ) is the space of all real-

valued continuously differentiable functions on [0,00) and o, <o then the

Laplace transform of z'(t) is L[z'(t)]=sZ (s) —z (0) for all Re(s) > a,.

Definition 2.4: [31] Let z eC[0,x), the function z is oscillatory or oscillate if

Z has arbitrary large many of zeros. Otherwise is called non-oscillatory.

Remark 2.1: As zis continuous, if it is non-oscillatory then it must be

eventually negative or eventually positive.
2.2 Oscillation Criteria for DDE
Consider the linear autonomous DDE

z'()) + Xt pi 2(t — 1) = 0, (2.6)
where z € C[—7,),t >0, p, eR,and 7; eR" for i =1,2,...,n
Let z =max{z,,7,,....7. },
where the initial function is

z(t) = ¢(t) for (t) € C[—7,0] 2.7)

11



Theorem 2.2: [31] Assume p; is real number and 7, is positive real number,

for i =1,2,...,n then the equation,
F()=2+3L pe =0 (2.8)
has no zeros in R iff all solutions of equation (2.6) oscillate.

Theorem 2.3: [31] Let p;, T; are positive real numbers for i =1,2,...,n, then all

solutions of equation (2.6) have oscillatory behavior iff

I. sz‘ >—

i (T PO l)>

Theorem 2.4: [31] Let p,,z; >0 fori =1,2,...,n, if

<Z pO(minT) >~

1<i<n

then all solutions of equation (2.6) have oscillatory behavior.

Theorem 2.5: [31] Let p,z R then all solutions of equation (2.1) is oscillation

iff the characteristic equation
FD)=A1+pe =0

has no zeros in R.

12



Theorem 2.6: [31] Let p,z >0 then all solution of equation (2.1) is oscillation
iff pr> 1

e
Consider the linear non-autonomous DDE

z'(t) +p(t)z(t —1) =0, (2.9)

such that t >0, p(t) is a nonnegative continuous function on [0,c) and
reR",
and the initial function is

z(t) = p(t) for  $(t) € C[—7, 0] (2.10)

Theorem 2.7: [31] Assume that p(t) is a nonnegative continuous function on

[0,00) and 7 is positive real number, if

t

tIim inf | p(s)ds >e1
t—r

then all solutions of equation (2.9) is oscillate.

13



CHAPTER 3
Fractional Derivatives

Fractional Calculus is simply a non-integer order derivative or integral. There
are several definitions of fractional derivatives and integrals. Riemann-Liouville

(RL) definition is the most important among them.

In this chapter, we present the definition of the Riemann-Liouville (RL)
fractional derivative and fractional integral together with some of their
properties. Before we start we discuss some useful mathematical definitions that

are related to fractional calculus.

3.1 Useful Mathematical Definitions

Definition 3.1: [29] The Gamma function is the generalization of the factorial
forany z eR. Itis given by

I'(z) =Je‘ttz‘1dt
0

Property 3.1: [29] The Gamma function has some properties:
i. T(@Z+)=zT(z) for z eR”

. I'(z)=(z -1! for z eN

iii.  lim[T(z)|= forzeN andn € N

Z—>—Nn

14



Example 3.1:
i. T'@M=1
i. T@A/2)=+r

Definition 3.2: The Beta function is defined by an integral as
1
B(z ,w):j(l—t)w-]tz-ldt for zw eR*
0

Remark 3.1: The following formula shows the well-known relation between
Beta and Gamma functions

_I(2)rw)

forzw eR"
I'(z +w)

pzw)

Definition 3.3: [40] The Mittag-Leffler function was defined and studied by
Mittag-Leffler in the year 1903 and the generalization of it was studied by

Wiman in 1905.

I.  Mittag-Leffler function

(e 0] tk
E,(t) = z a>0

k=0 ['(@k+1)’

ii.  Generalized Mittag-Leffler function

Fap® =) oy @>Oandf>0

15



Mittag-Leffler function E, (t) for @ = 1 is the exponential function E,(t) = et.
It is known that exponential functions serve as solutions of linear ordinary
differential equations with constant coefficients. In a similar manner Mittag-
Leffler functions appear as solutions of fractional order differential equations,

this will be shown later in Example 3.7.

Example 3.2:

. _ o tk _ o tk ¢
L Eq(8) = Zk:Om = Yk=o; = €

.. o tK 1
I. EO(t)=Zk:0m =§,|t|<1

tk tk th+1 et—1

oo _ oo ¢ _
. Eq() = Zk=0m = Zk=o (k+1)! (t) Zk O(k+1)! ¢

e (B VE VO™ 1 _ sinn(/®

Ve E22() = Zimo mgiasy = 2650 iV 2KS0 G vE T e

o _ tk o (O
V. Epq(t) = Zk:om = k=0 20 = cosh(Vt)

3.2 Definition of RL Fractional Integral and Derivative

Definition 3.4: [40] Let a € (0,). Let z be piecewise continuous on

k =(0,00) and integrable on any finite subinterval of k . Then the RL fractional

integral of z of order « for t >0 is defined by

oDy 2 (t)——j(t—s)“—lz (s)ds for & >0.

16



Definition 3.5: [40] Let a € (0,). Let z be piecewise continuous on

k =(0,0) and differentiable on any finite subinterval of k. Then the RL

fractional derivative of z of order « for t >0 is defined by

1
rd-c)dt?

D%z (t) = j(t—s) “z(s)ds  for 0< a<l1.

Theorem 3.1: [40] Let z €C (0,) and let &, 8>0. Then for all t we have
D, ”[,D, “z (t)]=,D, “"z (t)
=,D,“[,D, "z (t)]
Corollary 3.1: [40] Let z €C (0,) and let 0 < a < 1. Then for all t we have

i. D& (D7%z(t) = z(b)

. _ z(0
. oD oDf'z(t) = z(t) — (Df I"E ))

Corollary 3.2: [40]

i. D[,D, "z ()]#,D,"[Dz (t)]

20)

—t*
r(a)

i. D[oD, z()]= oD,  [Dz(t)]+

Lemma 3.1: [40] Relation between RL fractional derivative and RL fractional

integral,
a d n -nN+a
D) =()" (D "2 1)

17



where n =[a]+1
Remark 3.3: In particular for 0 < a <1, then n=1and

0 Dtaz (t) =D (0 Dt_(l_a)z (t ))

3.3 Examples of RL Fractional Integral and Derivative

Example 3.3: [40] (The power rule) Let « >0, m > 0,and t >0, then

—a¢ M 1 t' a-lam
D" =——|({t-s)“s"ds

t
__1 (1- i—)“t *Is™ds

:mb(l—u)‘“t“ (tu)™tdu

= .'(l—u)“’lu "du

_ 1_1(m +1) tm+a
rm+a+l)

Remark 3.4: By using Remark (3.3) and Example (3.3) we have,

r(m+1)tm-«
r(m—a+1)

oDft™ = form>-land0<a<1

18



Example 3.4:

1 t
D%®*=—|(@t-s)“%*ds
I

Let x =t —s, hence

at =
D-%eat — € x%1lo—axdy — g=%pat
ot I-v(a)
0
Example 3.5:
- _1/2 _ 3 1/2 _ E
- oDs (/2 R
1/2 t1/2 t
I oDs T rape) . Nrw
1/2
. 4Dy / 3= \/%

iv. D, sin(t) :\/E(sin(t)f[cos(tz)dt —cos(t)]sin(tz)dt) , where X :\/E_
0 0 T

v. D, "cos(t) :ﬁ(cos(t)]cos(tz)dt —sin(t)_x[sin(tz)dt) , Where x =\/§.

5
i ODtmtzzﬂtm:@ﬁ |
(7/2) 15\ 7z

For a proof of parts iv and v see [29]

19



3.4 Laplace Transform of RL Integral and Derivative

Definition 3.6: [40] The fractional integral of z (t) of order « is

t

D, “z (t) =ﬁj‘(t —s)*?z (s)ds

so the Laplace Transform of the fractional integral of z (t) as

L{,D, "z (t)}—ﬁl—{t L)) =57 Z(s)

Definition 3.7: [40] Let the fractional derivative of z (t)of order O<a <1 is

1

thaZ (t)= - )dt

j(t —s)™“z (s)ds

The Laplace Transform of the fractional derivative of z (t) is defined as

L{,D{z (1)}=5"Z (s) - ,D, ““z (0)

Lemma 3.2:
L }_F(m +1)
.. r 1
. L{ D %t™} = r(nT:l:ﬂ)
iii.  L{(DFt™} = ")
v, Lft)e——
s—a
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S—O!
S—a

V. I—{o Dt_aeat}:

Vi, L{t"Egq(atD) = o

Example 3.6:

. 2/3 _r4 _ 6
i Lf e} =5 =

s*73

_I® w2 1

1
ii. L{,D 5(t?2+1)}=
{0 ARG S Sbers Sl A

Example 3.7: Solve the fractional differential equation

oD3z(t) = az(t)

such that a is a constant.

Solution: Inserting Laplace transform in the equation yields
1
L{ 4D z(t)} = aL{z(t)}

which implies that

S%Z(s) — 0Dt_(1_§)z(0) = aZ(s)

denote the constant quantity th_ (1_5)2(0) = D 3z(0) by c,, then the above

equation turns to be
1
s3Z(s) — ¢; = aZ(s)
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Hence,

Finally, Lemma 3.2 (vi) implies that

1

_2 1
= ¢t 3E11(at3)
s3—a 3’3

z(t) = L‘l{ -

3.5 Caputo Fractional Derivative

Definition 3.8: [40] The Caputo derivative of order O<a <1 for a function

z €C (0,) is defined by
CDza)—————j(—sy%—z@ms fort >0

Lemma 3.3: [40] Relation between RL fractional derivative and Caputo

fractional derivative where0 < a < 1

z(0)t™ @
[(1-a)

0°Dz (t) = (DF(2(t) — 2(0)) = (Dfz(t) —

Property 3.2: [40] Let A1 eR,0 < a < 1and for any constant ¢ in R, we
have

i. 0°D’1=0

il. oCDtaC =0
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iii. SDFe~M = Q%M
Theorem 3.2: [40] Let O<a <1 and g >1 then

TP e
r-a

CDt tﬂ—l

Lemma 3.4: [40] For O<a <1,

1-a
oDf oDy *z(t) = z(t) — oD{“Z(O)m
oDF¥§DEz(t) = z(t) — 2(0)
Definition 3.9: [40] Let the Caputo fractional derivative of z (t)of order

O<a<lis

0°Df z(t)—ﬁj( —s)“—z(s)ds

so the Laplace Transform of the Caputo fractional derivative of z (t) as

L{o°Dfz (t)}=s“Z (s) -5z (0)
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CHAPTER 4
Fractional Delay Differential Equations

In the previous chapters we introduced basic notions and results on delay
differential equations and on fractional derivatives. This chapters presents a
combination of fractional derivatives and delay differential equations which
yields fractional delay differential equations (FDDEs). Oscillations of a

particular class of fractional delay differential equations are given.

4.1 Oscillation criteria for FDDEs with constant and variable

coefficient
Consider the FDDE of the form
0°Dz(t)+pz(t—-7)=0 (4.1)
such that O<e <1 and p,z>0
with the initial condition
Z({t)=¢pt), forte[-r,0] (4.2)
where ¢(t) €C ([-7,0])

Theorem 4.1: [54] Let p,z>0 and let O<a <1 be the quotient of two odd

natural numbers. If the characteristic equation

F(A)=A"+pe™ =0
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has no zeros in R, then every solution of equations (4.1)-(4.2) has oscillatory

behavior.

Theorem 4.2: [54] Let p,z>0 and let O<a <1 be the quotient of two odd
natural numbers.

1
If rp"f>el then every solution of equations (4.1)-(4.2) has oscillatory

behavior.
Proposition 4.1: [54] Consider the FDDEs of the form
EDZz(t) +p(Dz(t—1) =0 (4.3)
such that O<a <1 be the quotient of two odd natural numbersand 7 > 0
with the initial condition
z(t)=ep(t), forte[-7,0] (4.4)

where p(t) is a nonnegative continuously function on [0, o)

1
If lim;,, . infp(t) =p >0and rp“ >el , Where p > 0 then every solution

of equations (4.3)-(4.4) oscillates.
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4.2 Oscillation criteria for FDDEs with two constant coefficients
Consider the FDDEs of the form
oDz (t)+pzt-7)+qz(t)=0, t >0, (4.5)
such that O<a <1 and p,z>0 and q is a real number,
with the initial condition
Z({t)=¢pt), forte[-r,0] (4.6)
where ¢(t) € C[—t, 0]

Proposition 4.2: [54] Let p,7,q >0 and let O<a <1 be the quotient of two odd

natural numbers. If the characteristic equation
F(A)=A"+pe ™ +q=0

has no zeros in R, then every solution of equations (4.5)-(4.6) has oscillatory

behavior.

Theorem 4.3: [54] Let p,7,q >0 and let O<a <1 be the quotient of two odd

pr

a-1

@+p)“ +qr

natural numbers. If p <q and >l,

then all solutions of equations (4.5)-(4.6) oscillate.
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Proposition 4.3: [54] Let p,7,q >0 and let O<a <1 be the quotient of two odd

pr 1

natural numbers. If p >q, and

a-1

@+p)“ +pz
then all solutions of equations (4.5)-(4.6) oscillate.

Corollary 4.1: [54] Let p,z>0, g < 0 and let O<a <1 be the quotient of two

- (p+0)r
a-1 > =

odd natural numbers. If p > —q, (Q+p) « >-qr and
@+p)“ +ar

then all solutions of equations (4.5)-(4.6) have oscillatory behavior.

4.3 Oscillation criteria for generalized FDDEs

Consider the FDDE of the form
0°Dizt)-D pz(t—7)=0 (4.7)
i=1

where p.,z, >0 for i =12,...,n and let O<a <1 be the quotient of two odd

natural numbers.

Theorem 4.4: [46] Let p,,z, >0 for i =1,2,...,n and let O<a <1 be the

quotient of two odd natural numbers. If the characteristic equation

F(A)=A"+) pe”" =0
i=1
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has no negative roots in R, then every solution of equation (4.7) has oscillatory

behavior.

Theorem 4.5: [46] Let p,,z; >0 for i =12,.,n and let O<a <1 be the

quotient of two odd natural numbers. If
1 n a a a .
I. Zpiri >(_) J
= e
. n 1 a a
I. Hpinfin >(g)a,
i=1

then all solutions of equation (4.7) have oscillatory behavior.
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CHAPTER 5

Fractional Difference Operators on hZ

Discrete mathematics is the opposite of continuous mathematics (which is
characterized by real numbers) and it is dealing with distinct values which

characterized by integers.

This branch of mathematics studies algorithms so it is the mathematical
language of the computer science and comes up in many fields of medicine,

science, physiology, engineering, biology and ecology.

Discrete calculus [18 and 19] and discrete fractional calculus were studied
intensively on the time scale Z, see [6, 35, 36 and 45]. In the last two decades
many researchers started to develop discrete calculus and discrete fractional

calculus on the time scale hZ, where 0 < h < 1, see [37, 47, and 51].

In this chapter we give the basic definitions about nabla and delta discrete

fractional operators on time scale hZ and their properties.
A time scale is a nonempty closed subset of real numbers.
Example 5.1: These are some examples of time scales

I. The integers Z
ii.  The real numbers R

iii.  The natural numbers N
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Example 5.2: These are some examples of subsets that are not time scales

i.  Theirrational numbers R\Q
Ii.  The rational numbers Q
ii.  Open interval (0,1)
Remark 5.1: Throughout this thesis, the time scale denoted by hZ is chosen to

be
hZ.={...,.—2h,-h,0,h,2h,...}, where O0<h <1.
Remark 5.2: The function z () will be defined in this chapter on one of the

following sets

i. N,,={a,a+h,a+2h,.}
i. N°,:=f{aa+h,a+2h,.,b}

iii. ,,N={b,o-hb-2h,.}

b-a

where abeR,b-a>0, eN.

Definition 5.1: [50] Assume z (t):N,, - R,

I. the forward h -difference operator of z (t) is given by

z(t+h)—z(t)
h

AZ(t)=

ii. the backward h -difference operator of z (t) is given by
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z(t) —z(t —h)

VhZ(t) = A

We state and prove the following properties which have an analogy on the time

scale Z
Proposition5.1: Let zw :N,, - R and o, R, thenforallt eN_
I Aha =0

. Adpaz(t) = adyz(t)

.  Ap(z+w)(t) = 4,z(t) + Apw(t)

iv. 4, qt+h = @D
. h h
Proof:
i. Aha - ? - O
i Ahaz(t) _ az(t+h})l—az(t) _ (z(t+hz—z(t)) _ aAhz(t)

i Ah(Z n W) (t) _ (z+w)(t+h})l—(z+w)(t) _ z(t+h)+w(t+:)—z(t)—w(t) _

z(t+h)—z(t) ., w(t+h)—-w(t)
h h

= A,2(t) + Apw(t)

atth+B_gt+B

h

t+B
iv. Apatth= = ah (a®—1)

Proposition5.2: Let zw :N,, - R and o, R, thenforallt eN_

I Vha =0
. Vyaz(t) = aV,z(t)

i, V,(z+w)(t) = Vpz(t) + Vyw(o)
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t+p _ (A—a”Mat*h
v. Vya .
Proof:
- a—a
l. Vha = T =0
i Vyaz(t) = 2O o g ZOZED _ gy, 2(n)
i Vh (Z n W) (t) _ (z+w)(t)—(z+w)(t—h) _ z(t)+w(t)—z(t—h)—w(t—h) _

h h

z(t)—z(t—h) n w(t)-w(t—h)

h n = VhZ(t) + VhW(t)

Definition 5.2: [5] Let t eR and h >0, then

I.  The forward jump h-difference operator is
o,t)=t+h
ii.  The forward jump h-difference operator is
o, t)=t-h

Remark 5.3: For h =1 on time scale hZ, yields the time scale of integers

i.  The forward difference operator is

AzZ(t)=z(t+1D)—z(t)

Ii.  The backward difference operator is

Vz(t)=z(t)-z(t -1
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iii.  The forward jump difference operator is

o(t)=t +1

Iv. The backward jump difference operator is

pt)=t-1

Definition 5.3: [29] Forany v e R, such that t e R\{...,—2,-1,0}

I.  The falling function is

(@ = re+1)
rec—-—v+1)

Ii.  The rising function is

t;_F(t +V)
Y0

iii.  0'=0

iv.  v(t')=vt'?

5.1 Delta h - Fractional Sums and Differences

Definition 5.4: [9] Lett eN_, and a € R, so the delta h -factorial function

denoted by

T +1)
1@ _pe h
h t
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Definition 5.5: [9] Let z(t)eN,, n, , N—>R, and b =a+yh forsome

y e N. Then

i. The left delta h -discrete fractional sum of order O <« <1 is:

1 o(t—ah) o
(An%z)(t) = ra)f (t— a(s)); Y 2(5)dps

t/h—a
1 .
- 2 (t— o)V zGh)h, te{t+an : TENg )
r(a) i=a/h "

ii. The right delta h -discrete fractional sum of order O<a<l is

A= ﬁ (PO -DEIZ(S)V,s.

1 bmo o
) > (ih-ct)“Pz(ih)h, te , N
i=t/h+a

Definition 5.6: [9] Delta h —RL discrete fractional difference

iI. The delta left h —RL discrete fractional difference of order a > 0,
beginning at a, has the form:

GARZ)E) = (A} A Z)E),  teN,
where n=[a]+1.

ii.  The delta right h —RL fractional difference of order « >0, ending at b
has the form:

(h Ayz )(t) :(_1)n (VE hAg(nia)z )(t) t ENb—(n—a)h,h
In particular, for 0 < ¢ < 1and a = 0, we get
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L (AR = (4, oA, 7))
i (A7) = (DY, WA, 7))

Definition 5.7: [9] Let & >0, n=[a]+1,

I.  The delta left h — Caputo fractional difference of order « >0,

(g ARZ)(t) =, Aﬁ(n_a)AEZ ), te Na+(n—a)h,h
Ii.  The delta right h — Caputo fractional difference of order « >0, ending at b
(252 (0) = (4, (DM (®), t € Np_(n_ayn

Remark 5.4: In particular at 0<a <1, and a=0, then we have n =1, so,

i §A%D (1) = (04, V2D (1), tE€ENu_gnn

i (452)(©) = W, (T2)(©),  tE€p-aoamn N
Lemma 5.1: [9] The relation between delta h - RL and delta h — Caputo discrete

fractional difference forany 0 < a < 1, is given by

i C pa _ a (t_a)gl_a)
LG50 = (W50 - S22 s(a)

. C A o (b-1)s®
i, GA52)(0) = (52 () — 22 (h)

Proposition 5.3: [9] For @ > 0,h > 0 and z defined on N, , we get for

(S Na+nh,h c Na,h :

L Cerand ad7%2)(0) = 2(0),

i, (a+(n—a)h)Aﬁa a %Z)(t) = z(t), a &N
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Apz(a)

i, (5% QA%2)(0) = 2(t) — Ypod O 2@

a €N
k!

Proposition 5.4: [9] For a > 0,h > 0 and z defined on N, , we have for

t € Nb—nh,h C Nb,h .

i (A pd, 2)(0) = 2(D),

i (hdplen ndp2)(0) = z(¢), a &N

) _ - (=1)kvkz (b
V. (n8p%n n852)(0) = 2(8) — Do 0 g e N

5.2 Nabla h- Fractional Differences and Sums

Definition 5.8: [2] Assume t € N, , and « € R, so the nabla h -factorial

inn i o (ta)
function is, for h >0, we have tf = h® I‘h(t)
n
In particular, for h =1, we have t® %

Definition 5.9: [48] (Left and right nabla h - fractional sum).

Let z(t):N,, >R and0 <h <1,
i. The left nabla h - fractional sum of order O<a <1 and a = 0 is

(Vi zxn-——{a—p@mfAQVs

F(l )%(t — p(ih))Z*z (ih)h, fort eN,,

ii.  Theright nabla h - fractional sum of order O0<a <1 is
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(,Va“2)(t) =ﬁ [Pt 26)V,s.

b/h-1

:@i;(ih —pt)i 'z (ih)h, te N

Definition 5.10: [9]

The nabla left h—RL discrete fractional difference of order o > 0,

beginning at a, has the form:

GViz)t)=(Vh V,"z)t)  where t € Nyypyp, n=[a] + 1.
The nabla righth —RL fractional difference of ordera > 0, ending at
b has the form:

(Vi))=(-D"(A] V,"2)t)  where ¢ € Ny_yp, n = [a] + 1.

In particular, for 0 < a <1 and a = 0 we get,

(oVE2)(E) = (T oV, T ¥2)(1)

WVE2) (1) = (=1)Ann¥, T92)(®)

Definition 5.11: [9] Let @ > 0, n = [a] + 1, then

The nabla left h — Caputo discrete fractional difference of order « >0,

startingat a (@) =a+ (n—1)h = a + [a]h, is

E, @7 D) = (ayV " PVR2)(E), t € Naynn
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1. The nabla right h — Caputo discrete fractional difference of order « >0,

ending at by,(@¢) =b— (n—1)h =b — [a]h, is
GVE D)) = (nV, WD ARZ)(6), t € Np_pp yN
where g4h = (=1)"43.
Remark 5.5: In Particularat 0 < ¢ < 1, and a = 0, then we haven = 1,
b, (a) = b and a,(a) = 0, so,
i GVED®) = oV T2, tEN,,

i (GUED®) = G, O (=A)D)(©), tE pn N
Lemma 5.2: [9] The relation between nabla left h-RL and nabla left h —

Caputo fractional difference is:

I. Forany aeR, we have

(VV,2) () = (Vy JVi%2)(t _-oft )
Ti DO = T o DO — et — (@),
ii. Fora=0,andn =1, we have
CTThD(®) = (T o720 ~ D 200)
h h F(a)
EVD® =% " ma®
~(1-a )r”
= O o7 DO - 20
~ (TR - 20
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Lemma5.3: [9] Forany b € R,0<a <1, andn = 1, the relation between

nabla right h-RL and nabla right h —Caputo fractional difference is

iy _ iy (b—0)f?
(WVp “(—4R)2)(t) = (—4paV, “2)(t) — WZU?).
hence,
b—t)l@
VE2) () = (WV52)(t) — %Z(b)

Proposition 5.5: [9] For a > 0, h > 0 and z defined on N, ,
i G TED®) = 2(0),
i (Vi) = z(t), agN

_ ) Ak
i, (VF VD)) = 2(t) — SRy D e

Proposition 5.6: For «>0, h>0 and z defined on N,, we have for

L GV WV "2 (@) = z2(D),

i WY WEDWO = 2(D), agN

_ _1 =P —1)kvkz(p
ii. (V5% WVE2)(E) = 2(t) — TP CIW0  geN

Theorem 5.1: [9] Let « > 0, h > 0, f > —1.Then,

. —arp B _ TB+) . a+P
I. VOt a)h_—l"(ﬁ+1+a)(t a),

ii. Inparticularfora=0and0<a <1
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rad-a

Vo (t t N
oVr *(Or® F( a+1+a)()h (1-a).
5 r(B+D)
I11. aV,‘l"(t—a)ﬁ =m(t—a)h

; (t-a)p”
v, IEDE® =

_ (t—a)¥
V. W@ = S0

Vi. (7o) () = &

r(l+a)

( W7 D@ =0

Vil.

T

Lemma 5.4: [27] For a<1,then: I'(1—a) = SN (@)

5.3 Nabla h-Discrete Laplace Transform

Definition 5.12: [9] The nabla h -discrete exponential kernel can be expressed

as.

Bos(tad) = (1-h)h

where ©5=17 and teNg .

When a=0 , then it will be

blw

pees(£0) = (1- /).

Definition 5.13: [9] Suppose z (t) is defined on N, 4,

1-hs|<1, and
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O<a<1. Then the nabla h - discrete Laplace transform of z is defined by

Loz O3) = [ 162 (. 2)2 OV

o0

- nees (t,a)
1-hs

a

z(t)V,t

= T(l— hs) ™z (t)V,t

=h i (L—hs) "z (ih)

i=a/h+1

Lemma 5.5: [9] Forany a > 0,
Lo, n{(aVr “2)()}(s) = s7%Z(s) — z(0)
where
Lo n{z(1)}(s) = Z(s)

Lemma 5.6: [9] Let z be a function defined on N 5.
Then

Lo n{Vnz(0)}(s) = sZ(s) — z(a)
Lemma 5.7: [9] Forany «eR\{..,-2,-1,0} and [1-hs|<1,

we have:
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L, n{(t —2),")}s) =s ““I(l-a)
Lon{)r)}s) =5 “T(A-a)

Lemma 5.8: The nabla h —delay discrete Laplace transform of z(t — 1) :

0

Lo n(z(t = D}(s) = h(1 — hs)R Z (1 = hs)!1Rz(jh) + h(1 — hs)FZ(s)

j=pti-t/h

Proof:

Loz € -2)}6)=h > (@-hs) **"z(ih 1)

i=a/h+1

—h 3 (@—hs) 7 (jh)

j=alh +1—%

—h@-hs)i 3 (1-hs)i Tz (jh)

j=alh +1—%

—h@-he)i (S @A-hs) Mz (jh)+ S (@-hs)iTz (jh)

j=a/h+1-p j=a/h+l

—h(L—hs)f( i (L—hs)i T2z (jh)+Z (5))

j=alh +1—%

=h(@1—hs)h i (1-hs)I 2"z (jh)+h@=hs)"Z (s)

i= _r
j=a/h+1 h

In particular, when a = 0,

Lon{z @ —7)}(s)=h(l-hs)F i (1-hs)i?z (jh)+h(@L—hs)"Z (s)

j=1-%
1=y

Lemma 5.9: The nabla h —discrete Caputo fractional Laplace transform has the
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form:

Lo‘h{‘g Viz®)}s) =Ly {Viz ©)}(6)
=597 (s)-s*"z(0)

Proof: By using Lemma 5.2 and Lemma 5.7, we have

Lo, n{§VE2(D}(5) = Lo, nloVi2(t) — r<(1)h @)

O
e AOX)

z(0)}(s)

= Lo, n{oVx 2(©)}(s) — Lo, n{
z(0)
r(i—a
= sLon{(% 2O}, 7 (0) = 57712(0)

=55 (17N 7(s) — 0 — s 12(0)
=s%Z(s) — s 1z(0)

= Lo, n{Vno Vi " 2()}(s) — s~ O"Or(1 - a)

Result5.1: If z(t) > 0,then Z(s) >0forall0 <1 —hs < 1.

5.4 The Discrete Q —Operator

Definition 5.14: [9] The Q —operator action, which denoted by

Qz)(t)=z(a+b —t), is a tool that is used dually to link right and left type

fractional differences and sums and to transform left type h —fractional sums

and differences equations to right ones and vice versa.
Lemma 5.10: [9] Assume b=a+kh, h>0,and z (t)e N, , NN, ,, then

QAhZ (t) :_thZ (t)
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Proof: By using Definition (5.1) , yields

z(t+h)—z(t)

Az(t)= -
QAhz(t)=QZ (t+hh)—Qz (t)
_ z@+b-t-h)-z(@+b-t)
h
_ ,z(@a+b-t)-z(@+b-t—-h)
= —( ~ )
= -V,z(@a+b-t)
=-V,Qz (t)

Lemma 5.11: Assume b =a+kh, for some k eN.Then

I QQz)=z(t)
ii. Qz(a)=z(b)

Proof:

.  QQz(t)=Qz(a+b-t)
=z(t)
. Qz@)=z(a+b-a)

=z(b)
Theorem 5.2: [9] For >0, h>0, z(t) e N,, NN, ,, and b =a+kh, for some

k e N.Then,

L (V) =Q(, Y, 2)t) = (,Vy z)@+b —t)
i (ViQ2))=Q(,Viz)t) = (,Viz)@+b -t)
i.  CViQz))=QEViz)t)= §Viz)@a+b-t).
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Theorem 5.3: [9] For >0, h>0, z(t) e N,, NN, ,, and b =a+kh, for some

k e N.Then,

L GAQL)) =Q(A2)E) = (A 2)(@+b ~t)
i (AQZ))=Q(AZ)E) = (,AZ)@+b 1),
i CAQL))=QEAIZ)) = CAiz)@+b-t).
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CHAPTER 6
Oscillation Criteria for Fractional Delay Difference Equations

A nonzero solution of a fractional delay difference equation is said to be
oscillatory if it is neither negative nor positive, and this equation is said to be
oscillatory if all solutions of it are oscillatory. The solution is called non-

oscillatory if it is eventually negative or eventually positive.

We have reviewed in the former chapters many results related to the oscillation
of delay differential equations and of fractional delay differential equations.
However, the oscillation of fractional delay difference equations has yet to be

investigated.

In this chapter we lay out the main results of our work. We state and prove
sufficient conditions for the oscillation of two main classes of fractional delay
difference equations. Numerical algorithms and examples are provided to

illustrate our main results.

6.1 Oscillation Criteria for Fractional Delay Difference Equations

with One Positive Coefficient

We study oscillation of Caputo h -fractional delay difference equation of the

form

GVez)t)+pzt-7)=0, O<a<l (6.1)
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teN,,, peR" and e N, but fixed.
z(@t)=¢t) for teN’ . (6.2)

Later on we study oscillation of a generalizaion of (6.1) and (6.2) of the form

CVi)O)+dpz-7)=0, O<a<l 6.3)

where t eNp 0, > 0,7, EN, , forall i =1,2,...,mand let r =max{zr,,7,,....7,,} .
Z(t)=¢@) On t N2, . (6.4)
Next we give sufficient conditions in terms of a characteristic equation for the

oscillation of equations (6.1)-(6.2).

Theorem 6.1: Assume that peR",zeN,, and teN,,. Let a<(0,1) be the

quotient of two odd natural numbers , 0<h <1. If the equation

F(s) = s% + ppegs(7,0)
= s% + ph(1 — hs)*/"

has no zeros in R, then all solutions of equations (6.1)—(6.2) oscillate.

Proof:

Assume on the contrary that there is a nonoscilatory solution z (t) of equation
(6.1). Without losing of generality, we suppose that z(t) is an ultimately

positive solution of equation (6.1) that is, there exists T eN, , where z(t)>0

for teN_ .

Let 0<l—hs <1, Then we insert the nabla h —discrete Laplace transform
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starting at 0 to equation (6.1), so we get

Lon{s Viz (0)}s) + Lo {pz (t —7)}=0

By using Lemma 5.8 and Lemma 5.9,

$?Z (s)—-s“'z (0)+ ph(1—hs)" i (1-hs)i?z (jh)+ph(@-hs)"Z (s)=0

j=1-%
1=y

(s“+ph(@—hs)")Z (s)-s“?'z (0)+ ph(L—hs)" i (1-hs)i?*z (jh)=0

j=1-2
1=y

Let d(s)=5""z (0)— ph(L—hs)F ZO: (L—hs)i2z (jh) then,

j=1—%
1=

F(s)Z(s)—-®(s)=0

F(s)Z(s)=®(s)

By taking s ——o we reach an inconsistency because
Jim F(s) = lim (s% + pregs(z, 0))

T
= lim (s* + ph(1 — hs)r) >0
S—>—00

and since z(t)>0 forall teN_ ,,wehave lim Z(s) >0,

S——00

Slirpr(s):SILrpw(s“‘lz (0)—p(L—hs)* ZO: (1-hs)z (jh))

=
= lim (2 O)- p fim (@)’ Y. @-hs) 2 (jh))
j=
—0- p lim (A-hs)} > (A-hs)z (jh)

j=1-%
1=

=-00<0
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Then ®(s) becomes eventually negative which is a contradiction because both
F(s) and z (s) are positive for all real negative s .

Lemma 6.1:

m m 0 .
Lanl) pt =)&) = Do Y. h(1—hs) " hhz(h)
i=1 i=1 j ;

JGES:

m
+ Z pih(1 = hs)T/mZ(s)
i=1

Proof:

By using Lemma 5.8 the nabla h —delay discrete Laplace transform

Lonl) piz(t—td(s) = Y pi Y h(1=hs) " ha(in 1)
i=1 =1

j=p+1

0

P ). h(L—hs) R ZGR)

Il
i

=Y pa- hs) T Y ha - ks R Gh)

= j=(F)+1-%
m [e'e]
i a
+ p, (1 hs)w Z h(1 — hs) ™17 z(ih)
=1 j=()+1
m 0 ,
. L a
=dp )R-k TR RGR)
N O

m
+ Z pih(1 — hs)T/hZ(s)
i=1

In particular, for a = 0, we get
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m m 0 m
Lon() izt =m}(®) = ) pi ). h(L=hs)"¥TaGh) + > pih(1 = hs)"/Z(s)

. Ti
==y

Theorem 6.2: Assume that p, >0, 7; eN, , forall i=12..mand let «<(0,1)

be the quotient of two odd natural numbers , 0<h <1, If the equation

m m

Ti

F(s)=s"+ Z Pin€os(1,0) = s%+ Z pih(1 — hs)®
i=1 i=1

has no zeros in R, then every solution of equations (6.3)—(6.4) oscillates.

Proof:

Assume on the contrary that there is a nonoscilatory solution z(t) of
equation (6.3). Without losing of generality, we suppose that z(t) is an

ultimately positive solution of equation (6.3) that is, there exists T eN, ,,
where z(t)>0for teN__, .
Let 0<1—hs <1, Then we insert the nabla h —discrete Laplace transform
beginning at 0 to (6.3),50 we have

LonfS VEZ (O}6) + L{zp 2(t-7,)}s)=0

By using Lemma 5.9 and Lemma 6.1, we get

5"+ p,hA-hs)H)Z (5) =52 (0) + Y p, " h@—hs) ™z (jhy=0

T
J=l=
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Let,

@)= 5"2(0)-2p > haa-hs) 2 (jn)

L

Then,
F(S)Z(s)—d(s)=0
F()Z(s)=D(s)
By taking s ——o we reach an inconsistency because

lim F(s)= lim (s +3p,h(@-hs)*)
—— $——00 ]

=00>0

and since z(t)>0 forallteN_,,,wehave limZ(s)>0,

S —>—w

lim @(s) = lim (s *17 (0) - Zp, Zh(l hs) ™%z (jh))

= lim(s*z(0)- lim (Zp, Zh(l hs)! ™%z (jh))

=1-L
=

=0— lim (Zp, Zh(l hs) ™%z (jh))

S——0
=—00<0

Then @(s) becomes ultimately negative which is a contradiction because both

F(s) and z (s) are positive for all real negative s .
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6.2 Oscillation Criteria for Fractional Delay Difference Equations
with Two Positive Coefficients

We study the oscillation of the Caputo h -fractional delay difference equation

with two positive coefficients of the form
CVez)t)+pzt—-7)+g9z(t)=0, O<a<l (6.5)

teN,,, p.geR" ,ae(01) is the quotient of two odd natural numbers and

reN, , butfixed.
z(@t)=¢t) on teN® . (6.6)

Theorem 6.3: Assume that p,geR",zeN, , andteN,,, and O<h<1 . If the
equation

F(s) = s% + prégs(1,0) + ¢
T
=s%+ph(1 —hs)h +q

has no zeros in R, then every solution of equations (6.5)—(6.6) has oscillatory

behavior.
Proof:

Assume on the contrary that there is a nonoscilatory solution z(t) of
equation (6.5). Without losing of generality, we suppose that z(t) is an

ultimately positive solution of equation (6.5) that is, there exists T eN, ,
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where z(t)>0for teN_ .

Let 0<1—hs <1, Then we insert the nabla h —discrete Laplace transform
beginning at 0 to (6.5), S0 we get
Lon {5 Viz ©)36)+ L, {pz t —)}+L, {0z €)}=0

by using Lemmas 5.7, 5.8 and Lemma 5.9

s?Z (s)—s“*'z (0)+ ph(1—hs)" Zol (1—hs)Iz (jh)+ph@—hs)"Z (s)+9Z (s) =0

j=1-%
1=l

(s®+ph@—hs)"+q)Z (s)—s“?'z (0)+ ph(L—hs)" 20: (1-hs)?z (jh)=0

j=1-%
1=l

Let,

®(s) =5z (0)— ph(L—hs)F i (1—hs)i?z (jh)

P
j=1-]

Then,
F(GS)Z(s)—-Pd(s)=0
F(S)Z (s)=d(s)
by Taking s ——o we reach an inconsistency because:

Jim F(s) = Jim (s + pye s (r,0)+a)
= lim (s“+p@-hs)" +q)

=0>0

and since z(t)>0 forall teN_, , we have lim Z (s)>0,
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Jim ©(s) = Jim (52 0)- pa-hs)} > (A-hs)' 2 (jh)

j=1-%
1=l

= Slirpw(s“‘lz (0)) - psllmw (L—hs)h Zo: (1—hs)i?z (jh))

=0-p lim (@-hs)" > (1-hs)!?z(jh))

i=1-°
j1-L

=-00<0
Then ®(s) becomes ultimately negative which is a contradiction because both

F(s) and z (s) are positive for all real negative s .

In the following theorem we study oscillation behavior of a generalizaion of

(6.5) and (6.6) of the form

GVED®) + 221 pZ(t — )+ 21 =0, O<a<l (6.7)
whereteN, ,q >0, p, >0,7; eN, , forall i=12..m,.
Z(t)=¢t) onteN’ ,. (6.8)

where 7 =max{z,,7,,...,7,, }.
Theorem 6.4: Assume that p;,q > 0, 7; eN, | forall i =12..m,andteN, ,

let «<(0,1) be the quotient of two odd natural numbers . 0<h<1 , If the

equation

m
F(s) =%+ ) pinbos(i,0) + 4

=1
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m Ti
= s+ ) pl—hs)h +q
i=1
has no zeros in R, then every solution of equations (6.7)—(6.8) oscillates.

Proof:

Assume on the contrary that there is a nonoscilatory solution z(t) of
equation (6.7). Without losing of generality, we suppose that z(t) is an

ultimately positive solution of equation (6.7) that is, there exists T eN, .,
where z(t)>0for teN_ .

Let 0<1—hs <1, Then we insert the nabla h —discrete Laplace transform

beginning at 0 to (6.7) so we have
m
Lo, n{5Viz(£)}(s) + LO,h{z piz(t — 1:)}(s) + Lo, n{qz()}(s) = 0
i=1
by using Lemmas 5.7, 5.9 and 6.2,

0 .
s%Z(s) —s“'z(0) + X2, p,, €01 (7, 0) J (1- hS)ThZ(t)Vht

-7

+ Z Pin€ea(t:,0)Z(s) + qZ(s) =0

i=1

0 . Ti
_h(1—hs) "V hz(jR) = 0

J=1-y

(s“ + ZZI p;h(1 — hs)% + q) Z(s) —s*1z(0) + X2 pi Z

Let,
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& (s) = sT1z(0) — Zpl 2 h(1 = hs)! " 2(jh)

i=1 _t
th

Then,
F(GS)Z(s)—Pd(s)=0
F(s)Z(s)=®(s)

by taking s ——oo we reach an inconsistency because:

m i
lim F(s) = lim (s* + Z pih(1 — hs)TF +q)
S—>—00 S—>—00 i=1
and since z(t)>0 forall teN__,, wehave limZ(s)>0,

lim @(s) = lim (s “-17 (0) - Zp, Z h@-hs) ™%z (jh))

§ —>—®©
L

lim sz (0)— lim (zp, Zh(l hs)! %7z (jh))

j=-L

h

0— lim (Zp, Zh(l hs) ™z (jh))

S —>—00
=7

h
=—00<0

Then o(s) becomes eventually negative which is a contradiction because both

F(s) and z (s) are positive for all real negative s .

6.3 The action of the Q-operator on Right Nabla Fractional
Difference and Oscillation Criteria
Consider the Caputo right h -fractional delay difference equation in the form:

GCVviz)t)+pzt-7)=0, O<a<l (6.9)
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teNy, NN, ,, peR*, b=khforsome k eN and reN, , but fixed.
z(t)=¢t) for teN® . (6.10)
Theorem 6.5: Assume that peR",zeN,, and teNy, NN, ,. Let «<(0,1) be

the quotient of two odd natural numbers , 0<h <1 and b =kh for some k eN. If
the equation

F(s) = s% + pregs(7, 0)
= s* + ph(1 — hs)™/"

has no zeros in R, then every solution of equations (6.9)—(6.10) oscillates.

Proof:

By applying the Q — operator to (6.9)—(6.10) then,
QG Viz)t)+Q(pz(t —7))=0, O<a<l
Qz2)t)=@Qa)t) for teN?, .

Then by using Theorem 5.10, we get
GViQz)t)+p@Qz)t-7))=0, O<a<l (6.11)

Qz2)t)=@Qg)(t) for teN° . (6.12)

Let,

y =(Qz)(t), so (6.10) — (6.11) become
G Viy)O)+p(y)t-7))=0, O<a<l (6.13)

(y)t)=(#)b-t) for teNC_, . (6.14)
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As we proved that the equation (6.1) oscillates, the equation (6.13) also
oscillates because it is just have a shifting to right to (6.1) and reflection around
y —axis. So, we transform nabla right h —Caputo fractional difference of order

a ending at b, to left one beginning at a=0, and prove the oscillatory behavior

for it.
6.4 Numerical Results

In this section we give numerical examples to present the previous theorems.
To achieve this goal we first rewrite each of the equations (6.1), (6.3), (6.5) and
(6.7) in an equivalent form. Then we provide a numerical algorithm
corresponding to each of the equivalent forms of equations (6.1), (6.3), (6.5) and

(6.7).
6.4.1 Numerical results for equation (6.1)

In this subsection, a numerical example of theorem 6.1 that related to equation

(6.1) will be studied. But first, the following remark should established.

Remark 6.1: Let z(t) be the solution of equation (6.1)

a % £—'
2(t) = 2(0) —f?a)Z;E’%‘_i:jg 2(ih — 1)

Proof: Apply .V, on equation (6.1)

(V)G Vaz)(t) + PV, “2)(t —7) =0,
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by using Lemma 5.2, we get

(Vi)Y - (Vi) ?1)_ S2OFPEY)E-)=0,

from Proposition 5.3, and Theorem 5.3 we have

z(t)=2(0)-poV,“z(t—7)
by using Definition 5.9 of left nabla, we obtain

t

Z(t)= Z(O)—%Zh:(t—p(lh)) 17 (ih — 7)h

t

~7(0) —%_hzl(t —ih +h)*%z (ih - 7)h

t

_2(0)- LS LR D Gy

[a) = L(=h=h)

B P ; JTE-T+14+a- 1)
—7(0)— @;h Ty 7 (ih —7)
ph* & T(E i +a) o

=7 (0)- @ ); (] 1)Z(Ih 7)

Numerical Algorithm for equation (6.1):

Given p>0.
Given «a<(0,1).
Given he(0,1).

Given k eN={,2,3,..}.
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Given N eN={1,2,3,..}.

Take z=kh.

Given a function ¢ on the discrete interval [-7,0] .
Let t; =h(j -1)—kh.

Let x(;)=o(;) for j=1..k+1

For j=k +2,k +3,...,N, let

j—k-1
~ p rG—-k—1-—i+a)
= 2(te) ~ T D Z F—k—p )
L
=Z(tk+1)—1_,(1_pa)l_,(a) Z BG—k—1—i+al—-a)z(ty,)
et
=z<tk+1)—%“(”“) D BU—k—1-i+a1-a)(ti)
i=1

where B denotes the beta function. Note that B is a function of two variables.

Remark 6.2: [12] There is no way of calculating the gamma function for values

up to 172.5 without getting an infinity, so we replace it by an equivalent form in

terms of beta function.
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Example 6.1:

i. Let p=165 a=5/11, h=05 k=2 N=100,and ¢(t) = t2.

12

10-\
8_

-5 -4 -3 -2 -1 o 1 2 3 4 5

Figure 6.4.1: Characteristic equation of equation (6.1) with p = 1.65, a = % h=0.5,

F(s) = s%*> +0.83(1 — 0.455)?

20
15

1071

5 F

0}

-20 : 3 : : :
-10 0 10 20 30 40 50

Figure 6.4.2: Oscillatory solution of equation (6.1) with p = 1.65, a = % h=0.5,
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ii. Letp =04, a==,h=001, k=100, N =1000, and p(t)

9000

8000

7000

6000

___ 5000

4000 1

3000

2000

1000 1

20 40 60 80 100 120 140 160
S

180 200

Figure 6.4.3: Characteristic equation of equation (6.1) withp = 0.4, a = 191, h=0.01,

F(s) = s981 4+ 0.04(1 — 0.015)10°

1.8

16

|
141

08r
06
“\\\H
OV2 1 1 1 L 1 1 1 1 e
-1 0 1 2 3 4 5 6 h 8
t

Figure 6.4.4: Non-oscillatory solution of equation (6.1) withp = 0.4, a = 11 h =0.01
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6.4.2 Numerical results for equation (6.3)

In this subsection, a numerical example of theorem 6.3 that related to equation

(6.3) will be studied. But first, the following remark should established.

Remark 6.3: Let z(t) be the solution of equation (6.3)

t

—ita)e .
2(t) = 2(0) ~ e )Z e 2

Proof: Apply ,V,;“ on equation (6.3) then we have that

(Ovﬁa)(g Vﬁz )(t) + (nga)zprz (t - Z-r) = O’
r=1

by using Lemma 5.2, we get

VO -GV (20 +(979(Epi2 € -7 =0

from Proposition 5.3, and Theorem 5.3 we have
z (t) =1z (O) o Vaazprz (t _Tr)
r=1

by using Definition 5.9 of left nabla, we obtain
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Z(t)—Z(O)——Z(t p(ih))y 1Zp z(ih —7,)h

=7 (0) —ﬁi(t —ih + h)ﬁ“liprz (ih—7,)h

t

1 aa TEM 4 o —1) &
_Z(O)_ﬁ _1h S Z;‘p z (ih —z,)h
1 JTE-T+H1+a-1) L
O vy .1“ rG-ieg 2
B _ h* I'(E—1+a)x B
=27 (0) ()er(t—l sz(lh z.)

Numerical Algorithm for equation (6.3):
Given p,py,...., Py >0.

Given a <(0,1).

Given h e (0,l).

Given k;k,,...k,eN={1,2,3,..}.

Given N eN={1,2,3,..}.

Take 7,=k;h , 7, =k,h,..., =, =k_h.

Let k =max{k,,K,,...K }.

Let z=max{z,7,,....7,}
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Given a function ¢ on the discrete interval [-7,0].
Let t; =h(j -1)-kh
Let z(t;)=o(t;) for j=1...k +1

For j=k +2,k +3,...,N, let

j—kp—1
) = 2tr) LIRS rG—k,—1—i+a)(1—a) )
z(t) = z(lg+1 __Epr Epr L ; Z(Li+1
Mo & - rG—rky—1i
j—ky—1

~ ha - Z:F(j—kr—l—i+a)1“(1—a)
= z(tg+1) — mrzlpr rG—k =0 Z(ti+1)
- i=1

ha m j_kr_l
= Z(tk+1)—m2m Z BG—kr—1-i+al—-a)z(tis1)
r= i=

@ m J=ky—1
h%sin(ra)

= 2t~ ) by Y B~k = 1= it a1 = @(tiy)
r=1 i=1

Example 6.2:

. 9
I. Letp =05 p,=11 p,=0.6a= H'h = 0.1,

k, =3, k,=20,k, =100,k = 100, N = 1000,m = 3, and (t) = t
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-2 0 2 4 6 8 10

Figure 6.4.5: Characteristic equation of equation (6.3) with p; = 0.5, p, = 1.1, p; = 0.6, = 19—1, h=01,

F(s) =s%81 4+ 0.22(1 — 0.15)1°0

400 . . . . . . . .

300

200

100

z(t)

-20 0 20 40 60 80 100 120 140 160 180

Figure 6.4.6: Oscillatory solution of equation (6.3) with p; = 0.5, p, = 1.1, p3 =0.6,ax = 19—1,h =0.1,
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.. 9
. Letp, =04, p,=05 p;,=03a= H‘h = 0.001,

k, =100, k, =200, k, =150,k = 200,N = 1000,m = 3,and ¢(t) = 5

600

500 | s

400 | /
W I / |
& 300 /

200 /

100 /

0 200 400 600 800 1000 1200 1400 1600 1800 2000
S

Figure 6.4.7: Characteristic equation of equation (6.3) with p; = 0.4, p, = 0.5, p; =03, a = %, h =0.001

F(s) = s%81 +0.0012(1 — 0.0015)3°°

457 \
3.5
B \

0.2 -01 0 01 02 03 04 0.5 06 0.7 08
t

z(t)

Figure 6.4.8: Non-oscillatory solution of equation (6.3) with p; = 0.4, p, = 0.5, p3 = 0.3,a = 19_1'h = 0.001,

67



6.4.3 Numerical results for equation (6.5)

In this subsection, a numerical example of theorem 6.5 that related to equation

(6.5) will be studied. But first, the following remark should established.

Remark 6.4: Let z(t) be the solution of equation (6.5)

B h F(E—i+a)
2(t) :Z(O)_F(“);F(%—i+1)

(pz(ih — 1) + qz(ih)

Proof: Apply ,V,“ on equation (6.5) then we have that
GVi)G VEZ)O) +p (Vi 2 )t —7) +a(,V,“2)(t) =0,

by using Lemma 5.2, we get

6V o Vi )(t)—(ova“)—r?l—)f;) 2(0)+p(V,y"2)(t —2) =0V, 2)) =0,

from Proposition 5.3, and Theorem 5.3 we have

z(t) = z(0) = poVy “2(t — 1) + qoV, “2(2)

by using Definition 5.9 of left nabla, we obtain
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t
z(t)=2(0)——P i(t—p(ih))ﬁﬂz(ih—r)h -

mlzl

t
=z (0)—FF)§(t —ih+h)#3z (ih-7)h —mz(t —ih+h)3z (ih)h

G )Z(t —p(ih))gz (ih)h

i D= 4o =) i D(t=hh 4o -1)
=201 )Z (Ffzt_intﬁ‘) )2 (ih—o)h _qu (Fret_ihtﬁ‘) )2 ih)h
t
B i JJE=T+1+a-1) h |+1+a 1)
=20 )Zh iy 20 ] )z r(t a2 ()
3 ha HF( |+a) ha ﬁF( |+a)
20 )Zr(ﬁt e 200G ye (i +p 2 M

—z (0)—F( )ZFI‘((ht 'Ii‘i‘))(pz (ih—)+qz (ih))

Numerical Algorithm for equation (6.5):

Given p>0.

Given q >0.

Given «a <(0,2).

Given h (0,1).

Given k eN={1,2,3,.. }.
Given N eN={1,2,3,..}.
Take 7=kh .

Given a function ¢ on the discrete interval [-7,0] .

Let t, =h(j —1)—kh.
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Let z(t;)=¢(t;) for j=1....k +1.

For j =k +2,k +3,...,N, let

j—k-1

he FG—k—1—i+a)
z(t;) = z(te+1) — I'(@ Z TG —k—1i) (Pz(tiv1) + qz(tiv1+k))
=1 e
B h* rG—k—-1—-i+o)lfr(1—-a
= Z(tg+1) — A=l @ rG—k=1 (Pz(tiv1) + qz(tiv1+k))

i
a o

=k1—1
= ) ~ T = Zl B(—k—=1—i+a 1= Q)@z(tin) +a2(tis10)
j—k-1

z BG—k—1—i+a1—a)z(tu)
i=1

4 ph%sin(ra)
= T Z(tk+1) — oo
m + qh%sin(ra)l'(«) m + qh%sin(ra)l'(«)

j—k—-2

qh%sin(ra) ] )
Y BG—k—1-i+a1-@z(tin)
i=1

" 7+ qh%sin(ma)l (a)

Example 6.3:

i. Letp=13,¢=08 a=—,h=02k=20,N=900,and ¢(t) = 2.

70



10

F(s)

-1 -0.5 0 0.5 1 15 2

Figure 6.4.9: Characteristic equation of equation (6.5) with p=1.3,q=0.8,a = 19_1'h =0.2,

F(s) = s%81 +0.26(1 — 0.25)% +0.8

400

300

200 1

100

z(t)

-100 1

-200 1

-20 0 20 40 60 80 100 120 140 160 180

Figure 6.4.10: Oscillatory solution of equation (6.5) with

p=139=08a=--h=02
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ii. Letp=03,q=16 a=",h=001k=90,N =900, and p(t) = 2

10 T T T T T T T T T —

0 20 40 60 80 100 120 140 160 180 200

Figure 6.4.11: Characteristic equation of equation (6.5) with p=0.3,q=1.6, a = %, h =0.01,

F(s) = s%* +0.003(1 — 0.015)*° +1.6

18
16
14r

127+

087

06} \\
0.4} \

-1 0 1 2 3 4 5 6 7 8 9

Figure 6.4.12: Non-oscillatory solution of equation (6.5) withp = 0.3,g = 1.6, a = % h=0.01,
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6.4.4 Numerical results for equation (6.7)

In this subsection, a numerical example of theorem 6.7 that related to equation

(6.7) will be studied. But first, the following remark should established.

Remark 6.5: Let z(t) be the solution of equation (6.7)

z(t)-z(O)—$z E"‘:‘g Teapr 2(ih = 1,) + qz(0)

Proof: Apply ,V,* on equation (6.7) then we have that

EVED©) + X VaDprz(t — 1) + (Vi®qz(t) =0, 0<a<1

EVEDO = =T pra(t =) + q2(0)

=~V pra(t = 1) +q2(1))

by using Lemma 5.2, we get

VDO (VI 2 0= (2 € -5 +az )

from Proposition 5.3, and Theorem 5.3 we have
z(t)=2(0)- sz(t )+ (Vi az ()

by using Definition 5.9 of left nabla, we obtain
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t
h

2(t)=2 (0)—iz(t —p(uh»h‘l(Zp 2(ih—7,)+qz )

~2(0) —ﬁia —ih+h) (3P, (ih —7,)+qz (O)h

t

1 h _ll"(t —ih+h +o— 1)

=2 2 S Opa i) raz )
h 1 1
-20)-— Zl r('thﬂiff) )(lez(n )4z (b))

t
he & I't-i+a)x

:Z(O)_r( )Z;F(‘—|+1)

Zp z(ih—7.)+0qz (t))

Numerical Algorithm for equation (6.7):

Given p,py,..., Py >0.

Given q >0.

Given «a <(0,2).

Given h e(0,1).

Given k,,k,,...k, e N={1,2,3,.. }.
Given N eN={1,2,3,.. }.

Take 7,=k;h , 7,=k,h,..., 7, =k h.

Let k =max{k,.K,,...k }.

74



Let z=max{z,7,,...,7,}-

Given a function ¢ on the discrete interval [-7,0].
Let t; =h(j —1)—kh

Let z(t;)=¢(t;) for j=1...k +1.

For j=k +2,k +3,...,N, let

j—kp—1 j—k-1

F}E 54 Z o ;gr__,: - i; D (i)~ q Z &t ;5 —= i;r D (b1
= =
I
= 20) ~ T a) @ Z z ks (,-1—_:—“1-); A9 )
j—k-1
L z rg-—=k ; g] —_ ik+_ai))1“(1 —a) i)
= j—ky
20— h“sir;(na) (i ) z (- k, F—(}1_— kir+_ai))r(1 mL P
r= i=1
jok-1
L z rg-—rk _r (1] —_ ik+_ai))1"(1 —a) Pir))
= I

T+ gh%sin(ma)l' (@)

Jj—kr

h%sin(ma) S rG—k,—1—i+a)l(l-a)

7+ qh%sin(na)l () (; Pr z rG—ky—1i z(ti+1))
B i=1

Z(te41)

j—k-2

~q ) BG—k—1-i+a1- @)t
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Example 6.4:
.

Let p, =08, p,=12, p,=057,a = —,h =01,

k,=3, k,=60, k, =100,k = 100,q = 1.9N = 1100, m = 3, and ¢(t) =
t+2

12

[|
10

10
Figure 6.4.13: Characteristic equation of equation (6.7) with p; = 0.8, p, = 1.2, p; = 0.57, «a

9

=h=0149=19
F(s) = s%81 4+ 0.257(1 — 0.015)*° +1.9
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-20 0 20 40 60 80 100

Figure 6.4.14: Oscillatory solution of equation (6.3) with p; = 0.8, p, = 1.2, p3 = 0.57, a = % h=0.1, q=19

.. 9
. Letp,=04, p,=0.7, p,=05a= H'h = 0.001,

k,=3, k, =60, k, =100,k = 100,q = 1.9, N = 1100,m = 3, and ¢(t) =

t+2
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Figure 6.4.15: Characteristic equation of equation (6.7) with p; = 0.4, p, = 0.7, p3 = 0.5,a = %,h =0.001,

1.4

e o

p4

08r

06

14

40 60 80 100 120 140
S

160 180 200

g=19, F(s) =s%140.0016(1 — 0.0015)*°° + 1.9

Figure 6.4.16: Non-oscillatory solution of equation (6.7) with p; = 0.4,

pz =07, p3 =05, a==,h0001, =19
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Remark 6.6: P. Zhu and Q. Xiang [54] gave numerical examples to illustrate
their results. In their numerical algorithm the product trapezoidal quadrature
formula was used to evaluate the integral resulting from applying the Riemann-
Liouville integral operator. In our numerical algorithm we do not need to use
approximation methods, because we are dealing with a prepared difference

operators.
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CHAPTER 7
Applications of Fractional Delay Difference Equations

Discrete mathematics and delay phenomena are developing rapidly and has
important interrelations with many fields as engineering, biology, and the

physical sciences, see [15, 16 and 44]

In this chapter we present two classical simple mathematical models on a
discrete delay differential equation, which can be applied realistically and we
write them as fractional difference delay equations. Then we apply the pervious

results to prove the oscillatory of the two models.
Remark 7.1: [42] We say a function z (t), where t >b, for some b eR is

oscillatory with respect to z~ if there is a sequence t, >0, limt =0, and

z(t,)=z . Otherwise, we say it is non-oscillatory. If z" =0, we simply call it

oscillatory or non-oscillatory.
7.1 Shower Temperature Dynamics

A familiar model of delay that it causes oscillatory patterns is when we want to
regulate the shower heat recovery system. The water streams at a steady amount
from the tap to the shower nozzle and we assume this time is t seconds. We

would never enter into the shower before modified the warmth. [12].
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Consider T (t) to be the temperature at the tap at time t , t is time in seconds, r
is the human reaction rate to a non-wanted temperature, T, is the desired

temperature.

Let T be the time which the water takes it to flow from the tap to the shower

head, T, an initial value of temperature [12].

The transition of the temperature can be characterized by the equation

ar _
dt

—r[T(t —1)] — T4] (7.2)

The constant r scales our reaction rate to an improper temperature. An active
individual would rather have a big value of r, but a phlegmatic one would
prefer a small value of r . But if r is too small, the temperature will modify very

slowly and if ris too large, then oscillations may occur which leading to

frostbite or burns [12].

Now we want to rewrite (7.1) by using nabla left h —Caputo fractional

difference of order O <a <1 be the ratio of two odd integers, 0<h <1, so we

have
GViT)X) =T (t —7)-T,]
=—IT (t —7) +1T,
G VAT )E)+r[T (t—7)-T,1=0 (7.2)
Let y() =T() - Ty (7.3)
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then, G Viy)) =G ViT))
Where (§V;y)(Tq) =0
y (0)=T (0)-T,
Then we can write (7.2) as
GVEn(@®) +ry(t—1) =0 (7.4)
Yo=T,—T4 (7.5)

Then by Theorem (6.1), If the equation

T
F(s) =s*4+rh(1 — hs)h
has no real roots, then every solution of equations (7.4) — (7.5) oscillates.

If we apply ,V,“ on equation (7.4) then we have that

y(@) = y(0) = rVp, “y(t — 1)
=y(0 )—@ " _, (6= p@)E™" y(ih—D)h

7:1(t —ih + W ly(ih — )h

t t— lh+h+ _1)

r(
a-—-1 ih —
I—v(a) h I_,(t l’fll+h) y(lh T)h

: r(z-i+1+a-1)

=yO) — g ey YD)

h IrG—i+a)
F(a) (I"(%—i+1)

y(ih — 1)
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Example 7.1:

I. Letr=165 a=

5

11!

h=05 k=2, N =100, y,=05-T,and T, =1.

-3

-2

Figure 7.1.1: Characteristic equation of equation (7.4) with r = 1.65, a = % h=0.5,

F(s)=s%*> + 0.83(1 — 0.55)?
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30 : . : . , : . . r

y (1)

30 T T T T T T T T T

T(t)

Figure 7.1.3: Oscillatory solution of equation (7.3) with r = 1.65, a = % h=0.5,
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i. Letr=025 =%, h=05 k=2 N =100, y,=05-T, and T, =1.

110

35

30 "\ §

25 | -

10 | -

Figure 7.1.4: Characteristic equation of equation (7.4) with r = 0.25, a = % h=105

F(s)=5s%%5 + 0.31(1 — 0.55)>?

Figure 7.1.5: Non-oscillatory solution of equation (7.4) with r = 0.25, a = 15—1 h =0.5.
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0.9

0.8 1

0.7 1

Figure 7.1.6: Non-oscillatory solution of equation (7.3) with r = 0.25, a = % h = 0.5,

jii. Letr=1 =%, h=05 k=2 N =100, y,=05-T, and T, =1.

117

Figure 7.1.7: Characteristic equation of equation (7.4) withr =1, a = % h=0.5,

F(s) = s%45 4+ 0.5(1 — 0.55)2
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t
Figure 7.1.8: Oscillatory solution of equation (7.3) withr =1, a = % h=0.5,
1.2
1 R e T e T TR R T S T R T T T e S R R T L TR A TR e T ST T TR T AT AT
\ ','/' B e
0.8 [ v 1
06 1

04r

Figure 7.1.9: Oscillatory solution of equation (7.4) withr =1, a = % h =0.5,

Remark 7.2: Notice that we obtain oscillatory solution in Figures 7.1.3 and

7.1.9 around desired temperature T; = 1

87



7.2 Fluctuations of Professional Football

National Football League (NFL) teams select the new talents in opposite
arrangement to the performance ranking of the former season. Usually the team
needs a particular amount of time to turn around for the worse or better [16]. Of
course, there are many factors that affect the success or failure of a squad (new
coach, shift to a new arena or a new town, player trades, injuries of key players,
etc.). The relation between the performance of a football squad and its level at a
former time was monitored. If the performances are poor, squads plan to fund in
new resources to have a better result in the next season. But if the performances
are soaring, teams are not likely to invest and they turn to weaker regrading the
competiveness which means that poor teams become better and good teams
become worse, which causes oscillations and this is what distinguishes the delay
time [12].

Consider U is the decimal fraction of games won by a NFL team during a
certain season, and it must be between zero and one, a is a growth coefficient,
1/years, t is time in years, and Un» represents the League-wide average value of
U:U_=0.5.

m

T

a2

Let 7= be the number of years ago, U, is the value of U att =0.
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The rate at which U changes at the present time t is proportional to the
difference between U _ and the value of U at some previous time t —, it is
expressed by the equation

&= —a[U(t = )] = Up] (7.6)

Now we want to rewrite (7.6) by using nabla left h —Caputo fractional

difference of order O<a <1 is the quotient of two odd natural numbers,

O<h <1, so we have

GViU)t)=-al(t-7)-U,]
=—au (t—-7)+au

G VU)Wt +al ¢ -7)-U,1=0 (7.7)
Let,
yt)=U@)-U, (7.8)
SVEN® = ErEN© —  §7EUn,
y(0)=U (0)-U,

Then we can write (7.7) as
GViy)t)+ay (t -7)=0 (7.9)
Yo=U,-U,_, (7.10)

According to Theorem 6.1 if the equation
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F(s) =s*+ah(1 - hs)%
has no real roots in R, then every solution of equations (7.8)-(7.7) oscillates.
If we apply ,V,“ on equation (7.9)
then we have that

y(t)=y(0)-a,V, "yt -7)

t

=y (0) —mZ(t — p(ih))i 'y (ih —2)h

t

—y(O)——Z(t —ih +h)*y (ih - o)h

S o (S T

‘y(o)‘ﬁ T ey AN
3 B . —i+1+a-1)
-y (0) zl r(t_. 2y -n
_y©@-2& h : Lol 20) G g

r():1 (=1 +1)
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Example 7.4: Let a=1, =%, h=05 k =6, N =80, y,=U,-U_, and

U_=05,U,=04

2.4

22

Figure 7.2.1: Characteristic equation of equation (7.9) witha =1, a = %, h=10.5,

F(s) = 5% +0.5(1 — 0.55)°
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0.5

Figure 7.2. 2 : Oscillatory solution of equation (7.9) witha =1, a = % h =05

3
EJ

Figure 7.2. 3 : Oscillatory solution of equation (7.8) witha=1, a ==, h =05
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Example 7.5: Let a = 0.25, a:%’ h =%, k=6, N=80, y,=U,-U_ and

U_=05,U,=0.1.

1.2

06 b

F(s)

04 r b

0.2 &

-1 -0.8 -0.6 -0.4 -0.2 0 02 04 0.6 0.8 1

Figure 7.2. 4: Characteristic equation of equation (7.9) with a = 0.25, a = %, h = %

F(s) = s%81 4+ 0.205(1 — 0.33s)®

0.5

03r 4

02r 4

Figure 7.2. 5: Oscillatory solution of equation (7.9) with a = 0.25, a = %, h =

[V
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25

9 1
h=—
3

Figure 7.2. 6: Oscillatory solution of equation (7.8) with a = 0.25, a =

11’

Remark 7.3: Notice that oscillation in Figure 7.2.3 occur around U,,, = 0.5

which the League-wide average value of U .
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Appendix
Matlab Codes Of Equation (6.1)

Oscillatory of equation (6.1)
clc
clear
close all
%Parameters
p=1.65; Alpha=5/11; h=0.5; k=2; N=100;
%Time mesh
for j=1:N
t(4)=h*(-1)-k*h;
end
%Here we define the function
F=@(t) t"2;
%You can try different functions
%21/log(3+t) %exp(t) %osin(t)....
%Here we evaluate the function at j=1:k+1
for j=1:k+1
Z(J)=F(h*(j-1)-k*h);
end

for j=k+2:N

102



%  Here we find the summation

S=0;

for i=1:j-k-1
S=S+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1);

end

S1=0;

for i=1:j-k-2
S1=S1+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1+k);
end

% Here we calculuate Z(j)
Z(j)=(pi/d)*Z(k+1)-((p*(h"Alpha)*sin(Alpha*pi))/d)*S-
((g*(h"™Alpha)*sin(Alpha*pi))/d)*S1;

end

%Here we plot the grph

figure(1)

set(gcf,'color','w');

plot(t,2)

xlabel('t"

ylabel('Z(t)")
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Non-oscillatory of equation (6.1)
clc

clear

close all

%Parameters

p=0.4; Alpha=9/11; h=0.01; k=100; N=1000;
%Time mesh

for j=1:N

t(j)=h*(j-1)-k*h;

end

%Here we define the function
F=@(1) 2;

%You can try different functions
%1/log(3+t) %exp(t) %sin(t)....
%Here we evaluate the function at j=1:k+1
for j=1:k+1

Z(J)=F(h*(j-1)-k*h);

end

%Here we evaluate for j=k+2:N
for j=k+2:N

%  Here we find the summation
S=0;

104



for i=1:j-k-1
S=S+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1);
end
% Here we calculuate Z(j)
Z())=Z(k+1)-(p*h"™Alpha*sin(pi*Alpha)/pi)*S;
end

%Here we plot the grph

figure(1)

set(gcf,'color',;'w');

plot(t,Z)

xlabel('t")

ylabel("Z(t)")

Characteristic equation of equation (6.1)
clc

clear

close all

%Parameters

p=1.65; Alpha=5/11; h=0.5; N=100; k=2;
s=[-0.1:1];

%Here we evaluate the function
y=(s."Alpha)+((p*h)*((1-(h*s))."k
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%Here we plot the graph
figure(1)
set(gcf,'color','w');
plot(s,y)
xlabel('s")

ylabel('F(s)")

Matlab Codes Of Equation (6.3)

Oscillatory of equation (6.3)
clear
close all
% Parameters
p1=0.5; p2=1.1; p3=0.6; Alpha=9/11; h=0.1; k1=3; k2=20; k3=100; N=1000;
k=100;
% Time mesh
for j=1:N
t(G)=h*(-1)-k*h;
end
% Here we define the function
F=@®)t;

% You can try different functions
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%1/log(3+t) % exp(t) % sin(t)....

%Here we evaluate the function at j=1:k+1
for j=1:k+1

Z(j)=F(h*(j-1)-k*h);

end

% Here we evaluate for j=k+2:N

for j=k+2:N

%  Here we find the summation

S=0;

for i=1:j-k1-1
S=S+beta(j-k1-i-1+Alpha,1-Alpha)*Z(i+1);
end

S2=0;

for i=1:j-k2-2
S2=S2+beta(j-k2-i-1+Alpha,1-Alpha)*Z(i+1);
end

S3=0;

for i=1:j-k3-2
S3=S3+beta(j-k3-i-1+Alpha,1-Alpha)*Z(i+1);
end

% Here we calculuate X(j)
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Z(j)=Z(k+1)-((p1*h"Alpha*sin(Alpha*pi))/pi)*S-
((p2*h™Alpha*sin(Alpha*pi))/pi)*S2-((p3*h"Alpha*sin(Alpha*pi))/pi)*S3;
end

% Here we plot the graph

figure(1)

set(gcf,'color','w");

plot(t,2)

xlabel('t")

ylabel('Z (t))

Non-oscillatory of equation (6.3)
clear

close all

% Parameters

p1=0.4; p2=0.5; p3=0.3; Alpha=9/11; h=0.001; k1=100; k2=200; k3=150;
N=1000; k=200;

% Time mesh

for j=1:N

t(j)=h*(j-1)-k*h;

end

% Here we define the function

F=@(t) 5;
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% You can try different functions
%1/log(3+t) % exp(t) % sin(t)....

%Here we evaluate the function at j=1:k+1
for j=1:k+1

Z(j)=F(h*(j-1)-k*h);

end

% Here we evaluate for j=k+2:N

for j=k+2:N

%  Here we find the summation

S=0;

for i=1:j-k1-1
S=S+beta(j-k1-i-1+Alpha,1-Alpha)*Z(i+1);
end

S2=0;

for i=1:j-k2-2
S2=S2+beta(j-k2-i-1+Alpha,1-Alpha)*Z(i+1);
end

S3=0;

for i=1:j-k3-2
S3=S3+beta(j-k3-i-1+Alpha,1-Alpha)*Z(i+1);
end

% Here we calculuate X(j)
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Z(j)=Z(k+1)-((p1*h"Alpha*sin(Alpha*pi))/pi)*S-
((p2*h™Alpha*sin(Alpha*pi))/pi)*S2-((p3*h"Alpha*sin(Alpha*pi))/pi)*S3;
end

% Here we plot the grph

figure(1)

set(gcf,'color','w");

plot(t,2)

xlabel('t")

ylabel('Z (t)")

Characteristic equation of equation (6.3)

clc

clear

close all

%Parameters

p1=0.5; p2=1.1; p3=0.6; Alpha=9/11; h=0.1; N=1000; gq=1; k1=3; k2=20;
k3=100;

s=[-0.5:20];

%Here we evaluate the function
y=(s."Alpha)+((p1*h)*((1-(h*s)).”k1))+((p2*h)*((1-(h*s))."k2))+((p3*h)*((1-
(h*s))."k3))

%Here we plot the graph
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figure(1)
set(gcf,'color','w');
plot(s,y)
xlabel('s")

ylabel('F(s)")

MATLAB CODES OF EQUATION (6.5)

Oscillatory of equation (6.5)

clc

clear

close all

%Parameters

p=1.3; Alpha=9/11; h=0.2; k=20; N=900; q=0.8;
d=(pi+(gq*(h"Alpha)*sin(pi*Alpha)*gamma(Alpha)))
%Time mesh

for j=1:N

t(4)=h*(-1)-k*h;

end

%Here we define the function

F=@(t) 2;

%You can try different functions
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%1/log(3+t) %exp(t) %sin(t)....

%Here we evaluate the function at j=1:k+1
for j=1:k+1

Z(j)=F(h*(j-1)-k*h);

end

%Here we evaluate for j=k+2:N

for j=k+2:N

%  Here we find the summation

S=0;

for i=1:j-k-1
S=S+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1);
end

S1=0;

for i=1:j-k-2

S1=Sl+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1+k);

end

% Here we calculuate Z(j)

Z())=(pi/d)*Z(k+1)-((p*(h"Alpha)*sin(Alpha*pi))/d)*S-

((g*(h"~Alpha)*sin(Alpha*pi))/d)*S1;
end

%Here we plot the grph

figure(1)
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set(gcf,'color','w');

plot(t,2)

xlabel('t")

ylabel('Z(t)")

Non-oscillatory of equation (6.5)

clc

clear

close all

%Parameters

p=0.3; Alpha=9/11; h=0.01; k=90; N=900; g=1.6;
d=(pi+(gq*(h"Alpha)*sin(pi*Alpha)*gamma(Alpha)))
%Time mesh

for j=1:N

t(j)=h*(j-1)-k*h;

end

%Here we define the function

F=@(t) 2;

%You can try different functions
%21/log(3+t) %exp(t) %osin(t)....

%Here we evaluate the function at j=1:k+1
for j=1:k+1

Z(J)=F(h*(-1)-k*h);
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end

%Here we evaluate for j=k+2:N

for j=k+2:N

%  Here we find the summation

S=0;

for i=1:j-k-1
S=S+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1);
end

S1=0;

for i=1:j-k-2
S1=S1+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1+k);
end

% Here we calculuate Z(j)
Z(j)=(pi/d)*Z(k+1)-((p*(h"Alpha)*sin(Alpha*pi))/d)*S-
((g*(h"™Alpha)*sin(Alpha*pi))/d)*S1;

end

%Here we plot the grph

figure(1)

set(gcf,'color','w');

plot(t,2)

xlabel('t")

ylabel('Z(t)")
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Characteristic equation of equation (6.5)

clc
clear
close all
%Parameters
p1=1.3; Alpha=9/11; h=0.2; N=1000; q=0.8; k1=20; k2=200; k3=150;
s=[-0.5:10];
%Here we evaluate the function
y=(s."Alpha)+((p1*h)*((1-(h*s))."k1))+q
%Here we plot the grphg
figure(1)
set(gcf,'color','w');
plot(s.y)
xlabel('s")

ylabel('F(s)")

Matlab Codes Of Equation (6.7)

Oscillatory of equation (6.7)
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clear

close all

% Parameters

p1=0.8; p2=1.2; p3=0.57; Alpha=9/11; h=0.1; k1=3; k2=60; k3=100; N=1100;
k=100; d=(pi+(g*(h™Alpha)*sin(pi*Alpha)*gamma(Alpha)))
% Time mesh

for j=1:N

t(j)=h*(j-1)-k*h;

end

% Here we define the function

F=@(t) 2+t;

% You can try different functions
%1/log(3+t) % exp(t) % sin(t)...

%Here we evaluate the function at j=1:k+1
for j=1:k+1

Z(j)=F(h*(j-1)-k*h);

end

% Here we evaluate for j=k+2:N

for j=k+2:N

%  Here we find the summation

S=0;

for i=1:j-k1-1
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S=S+beta(j-k1-i-1+Alpha,1-Alpha)*Z(i+1);
end

S2=0;

for i=1:j-k2-2
S2=S2+beta(j-k2-i-1+Alpha,1-Alpha)*Z(i+1);
end

S3=0;

for i=1:j-k3-2
S3=S3+beta(j-k3-i-1+Alpha,1-Alpha)*Z(i+1);
end

S4=0;

for i=1:j-k-2
S4=S4+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1+k);
end

% Here we calculate X(j)
Z(j)=(pi/d)*Z(k+1)-((p1*(h"Alpha)*sin(Alpha*pi))/d)*S-
((p2*(h"~Alpha)*sin(Alpha*pi))/d)*S2-((p3*(h"*Alpha)*sin(Alpha*pi))/d)*S3;
-((g*(h"™Alpha)*sin(Alpha*pi))/d)*S4;

end

% Here we plot the graph

figure(1)

set(gcf,'color','w");
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plot(t,2)
xlabel('t")

ylabel('Z (t))

Non-oscillatory of equation (6.7)

clear

close all

% Parameters

p1=0.4; p2=0.7; p3=0.5; Alpha=9/11; h=0.001; k1=3; k2=60; k3=100; N=1100;
k=100;

g=1.9; d=(pi+(gq*(h"Alpha)*sin(pi*Alpha)*gamma(Alpha)))
% Time mesh

for j=1:N

t(j)=h*(j-1)-k*h;

end

% Here we define the function

F=@(t) 2+t;

% You can try different functions

%1/log(3+t) % exp(t) % sin(t)....

%Here we evaluate the function at j=1:k+1

for j=1:k+1
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Z(j)=F(h*(j-1)-k*h);

end

% Here we evaluate for j=k+2:N

for j=k+2:N

%  Here we find the summation

S=0;

for i=1:j-k1-1
S=S+beta(j-k1-i-1+Alpha,1-Alpha)*Z(i+1);
end

S2=0;

for i=1:j-k2-2
S2=S2+beta(j-k2-i-1+Alpha,1-Alpha)*Z(i+1);
end

S3=0;

for i=1:j-k3-2
S3=S3+beta(j-k3-i-1+Alpha,1-Alpha)*Z(i+1);
end

S4=0;

for i=1:j-k-2
S4=S4+beta(j-k-i-1+Alpha,1-Alpha)*Z(i+1+k);
end

% Here we calculuate X(j)
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Z(j)=(pi/d)*Z(k+1)-((p1*(h"Alpha)*sin(Alpha*pi))/d)*S-
((p2*(h~Alpha)*sin(Alpha*pi))/d)*S2-((p3*(h"Alpha)*sin(Alpha*pi))/d)*S3;
-((g*(h"Alpha)*sin(Alpha*pi))/d)*S4;

end

% Here we plot the graph

figure(1)

set(gcf,'color','w');

plot(t,2)

xlabel('t")

ylabel('Z (1))

Characteristic equation of equation (6.7)

clc

clear

close all

%Parameters

p1=0.4; p2=0.5; p3=0.3; Alpha=9/11; h=0.001; N=1000; gq=1; k1=100; k2=200;
k3=150;

s=[-60:50];

%Here we evaluate the function
y=(s."Alpha)+((p1*h)*((1-(h*s))."k1))+((p2*h)*((1-(h*s))."k2))+((p3*h)*((1-
(h*s))."k3))+q

%Here we plot the graph
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figure(1)
set(gcf,'color','w");
plot(s,y)
xlabel('s")

ylabel('F(s)")

Matlab Codes Of Equation (7.3)

Oscillatory of equation (7.3)

clc

clear

close all

% Parameters

r=1.65; Alpha=5/11; h=1/2; k=2; N=100; d=1;
% Time mesh

for j=k+1:N

t(G)=h*(-1)-k*h;

end

% Here we define the function
T(k+1)=0.5;

y(k+1)= T(k+1)-d;;

% You can try different functions
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%1/log(3+t) % exp(t) % sin(t)....

%Here we evaluate for j=k+2:N

for j=k+2:N

%  Here we find the summation

S=0;

for i=1:j-k-1
S=S+beta(j-k-i-1+Alpha,1-Alpha)*y(i+1);
end

% Here we calculuate X(j)
y(j)=y(k+21)-(r*h~Alpha*sin (pi*Alpha)/pi)*S;
T@)=y()+d;

end

% Here we plot the graph

figure(1)

set(gcf,'color','g");

plot(t,y)

xlabel('t"

ylabel(y (t))

line (xlim, [d, d], 'color’, 'r', 'linestyle’, '--")
figure(2)

set(gcf,'color','w');

plot(t,T)
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xlabel('t")

ylabel('T (t))

line (xlim, [d, d], ‘color’, 'r", 'linestyle’, *--)
Characteristic equation of equation (7.3)

clc
clear
close all
% Parameters
r=1; Alpha=5/11; h=0.5; N=100; k=2;
s=[-1:1];
%Here we evaluate the function
y=(s."Alpha)+((p1*h)*((1-(h*s))."k))
%Here we plot the grphg

figure(1)

set(gcf,'color','w");

plot(s.y)

xlabel('s")

ylabel('F(s)")

Matlab Codes Of Equation (7.5)

Oscillatory of equation (7.5)
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clc

clear

close all

%Parameters

a=1; Alpha=3/5; h=0.5; k=6; N=80; m=0.5;
%Time mesh

for j=k+1:N

t(j)=h*(j-1)-k*h;

end

%Here we define the function
U(k+1)=0.4;

y(k+1)= U(k+1)-m;

%You can try different functions
%1/log(3+t) %exp(t) %sin(t)....
%Here we evaluate for j=k+2:N
for j=k+2:N

%  Here we find the summation
S=0;

for i=1:j-k-1
S=S+beta(j-k-i-1+Alpha,1-Alpha)*y(i+1);
end

% Here we calculuate X(j)
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y(j)=y(k+1)-(@*h"Alpha*sin(pi*Alpha)/pi)*S;
u@)=yQ)+m;

end
%Here we plot the grph
figure(1)
set(gcf,'color','g’);
plot(t,y)

xlabel('t")

ylabel(y(t))

figure(2)
set(gcf,'color','w");
plot(t,U)

xlabel('t")

ylabel('U(t)")

line (xlim, [0.5, 0.5], ‘color’, 'r", 'linestyle’, '--")

Characteristic equation of equation (7.5)

clc
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clear
close all
% Parameters
a=1; Alpha=3/5; h=1/5; N=80; k=6;
s=[-2:2];
%Here we evaluate the function
y=(s."Alpha)+((p1*h)*((1-(h*s))."k))
%Here we plot the graph
figure(1)
set(gcf,'color','w");
plot(s.y)
xlabel('s")

ylabel('F(s)")
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