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Abstract

Accurate and efficient model predictive control (MPC) is essential for Internet
of energy (IoE) to enable active real-time control, decentralized demand-supply
balance, and dynamic energy management. The MPC consists of short-term
electric load forecasting, whose accuracy is affected by the load characteristics,
such as overdispersion, autocorrelation, and seasonal patterns. The forecast-
ing efficiency depends on the computational time that is required to produce
accurate results and is affected by the IoE data volume. Although several funda-
mental short-term forecasting models have been proposed, more accurate and
efficient models are needed for IoE. Therefore, we propose a novel forecasting
temporal negative binomial linear model (NBLM) that handles overdispersion
and captures nonlinearity of electric load. We also classify the load into low,
moderate, and high intraday seasons to increase the forecast accuracy by mod-
eling the autocorrelation in each season, separately. The temporal NBLM was
evaluated using real-world data from Jericho city, and its results were compared
to other forecasting models. The temporal NBLM is found more accurate than
the other models as the mean absolute percentage error (MAPE) is reduced by
29% compared to the ARMA model. In addition, the proposed model is more
efficient as its running time is reduced by 63% in the training phase and by
87% in the forecast phase compared to the Holt-Winter model. This increase in
accuracy and efficiency makes the proposed model applicable for load forecast-
ing in IoE contexts where data volume is large and load is highly fluctuated, is
overdispersed, is autocorrelated, and follows seasonal patterns.

1 INTRODUCTION

The Internet of energy (IoE) aims at optimizing energy usage, improving the distribution of energy by enabling bidi-
rectional transmission of green energy and providing efficient control methods.1-3 An important application of IoE is
balancing the supply and demand by, for example, allowing consumers to determine the peak period and switch their use
of electric energy to other less demanded periods. On the other hand, prosumers are also capable of identifying the high
demand so that they can push more power to the system. For balancing the supply and demand, accurate and efficient
control strategies are required. A control approach that showed better accuracy and efficiency than other conventional
methods is the model predictive control (MPC).1,3 In the MPC, the actual and future state is forecasted using histori-
cal data obtained by the large volume of measurements. For daily energy management and real-time control, short-term
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forecasting can be used to evaluate control strategies before putting them in use.1 More importantly, forecasting has to be
accurate and efficient to enable an effective decision-making process within the suitable time.4,5

To address accuracy, forecasting models have to deal with electric load characteristics that affect accuracy, such as
nonlinearity,6,7 fluctuation,7-9 and temporal seasonal patterns.10-12 The nonlinearity and the high fluctuations cause
overdispersion meaning that the variance of the examined variable is greater than the mean. Clearly, electric load is
overdispersed as it fluctuates depending on the consumption rate, place, day time, and life style. Overdispersion is crit-
ical in forecasting, and if it is not handled properly, it reduces the forecast accuracy and causes false judgments about
the significance of the correlated variables.13 Another characteristic is the temporal autocorrelation and the seasonal
pattern because the consumption of energy follows specific patterns that are repeated periodically and can be captured
using historical data. Although several fundamental electric load forecasting models was proposed in the power systems
domain as in the works of Laouafi et al5 and Guan et al,14 these models did not assiduously consider the overdisper-
sion characteristic.15,16 In addition, if these models consider the overdispersion, they will consume much time and their
efficiency will be decreased17; meanwhile, the IoE domain incorporates big data that require efficient and real time
processing.4,5

To address efficiency, any forecasting model should have low time complexity, which quantifies the time demand for
running an algorithm and produce accurate results. Determining the time complexity of forecasting models assists in
deciding whether these models can be applied online to real time load balancing solutions particularly when data volume
is large. Although efficiency is crucial to the success of electric load control, few studies have considered the computation
time of the forecasting models in the power systems domain.5,14,18 To reduce the computational time, these models focus
on very short-term forecasting or utilize light forecasting models, but these models are sensitive to variations. According
to literature, most electric load forecasting approaches adopt neural network models that require much computational
time and their efficiency can still be improved.17,19

In this paper, we address the forecasting accuracy and computational efficiency. To increase the accuracy, we adopt the
negative binomial linear model (NBLM), which is derived from the negative binomial distribution for precisely handling
overdispersion. We accommodate the NBLM to electric load data by handling the temporal correlation and classifying
the seasonal patterns into low, moderate, and high load patterns. In addition, the NBLM can capture nonlinearity and
fluctuation of data in low time complexity, which improves the forecasting efficiency. This can be achieved by using an
efficient optimization method to estimate the correlation parameters and by applying statistical measures to determine
the significant correlated values. The negative binomial-based models were successfully tested in our previous work on
traffic data, which are autocorrelated, are overdispersed, and have seasonal patterns.20-22 The negative binomial was also
used to mine big data in social science, and it was found an accurate and efficient method.23

The proposed model is evaluated using a real-world data set of mixed load collected from Jericho city. The NBLM is
compared with other classical load forecasting exponential smoothing methods: autoregressive integrated moving average
(ARIMA), autoregressive moving average (ARMA), and Holt-Winters (HW). The results show that the proposed NBLM
model outperforms these models in terms of accuracy and efficiency, which makes the model applicable within the IoE
architecture. In summary, this paper firstly contributes accurate and efficient temporal NBLM for forecasting electric load
in different seasons mainly low, moderate, and high load conditions. This paper secondly emphasizes that overdispersion
is an important characteristic of electric load and requires careful treatment by any forecasting model.

This paper is organized in six sections. Section 2 discusses the related work and shows the gap in the literature. Section 3
presents the proposed temporal NBLM. The application of the proposed model including the data set, the training, and
testing of the model are shown in Section 4. Section 5 discusses the results of model, and finally, Section 6 concludes this
paper and identifies the future work.

2 RELATED WORK

Recently, several fundamental short-term electric load forecasting models have been developed to cope with the problems
of the electric load forecasting and with the emerging technologies in the power system domain, such as smart grids
and IoE. We do not provide extensive review of the short-term electric load forecasting as there are several papers in the
literature discussing that.6,24 We instead aim to contribute an accurate and efficient forecasting model based on the gap
in the literature. Because most papers in the field of electric load forecasting target the power systems mainly the smart
grid, the main focus of this paper is the IoE domain, which is more advanced and has different requirements than other
power systems domains.1-3 The core requirement is the need to deal with the big data accurately and efficiently.
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The electric load short-term forecasting models can be classified into statistical models and artificial intelligence–based
models. The statistical-based models can be categorized as univariate and multivariate models. In the univariate mod-
els, the time series of load is modelled according to historical data. Examples of these models are HW, ARMA, and
ARIMA.15,25,26 The multivariate models allows to include multiple explanatory variables that determine the behavior of
the response variable, such as the regression models.6,27,28 In the statistical-based model, the electric load time series is
ensured to be stationary and to have homogeneous variance by using differentiating transformations, such as Box-Cox.
These kinds of transformations increase the computational time. In addition, the aforementioned statistical-based models
assume equidispersion or depend on distributions that can not capture the high variation of electric load.

The artificial intelligence–based models include neural networks models,16,29 artificial networks models,30,31 support
vector machine models,28,32 fuzzy algorithms,33 and hybrid models.34,35 These models were proposed to deal with the
nonlinearity of the historical data so that the accuracy can be increased. However, these methods require more historical
data than the statistical-based model, they are very sensitive to irrelevant variables, they need many trials to tune the
coefficients, and finally, they require much computational time.17,19

The main challenge of the aforementioned models is dealing with the nonlinearity and high variance.10-12 The nonlin-
earity and high variance cause overdispersion, which needs specific handling during the modeling so that the forecast
accuracy can be increased.13 It is clear from the review that the statistical-based methods do not sufficiently address the
nonlinearity of the electric load. In addition, the artificial intelligence–based models require much computational time
for treating the nonlinearity while none has specifically accounted for the overdispersion problem. The high computa-
tional time reduces the efficiency, which was addressed in few studies.5,14,18 The low efficiency makes these forecasting
models unsuitable for electric load forecasting in the IoE domain. Therefore, we focus in this paper on proposing a fore-
casting model for handling the overdispersion problem while maintaining high efficiency so that the model can be used
in the IoE domain.

3 THE PROPOSED MODEL

In this section, we firstly explain the theoretical background behind the proposed model. Then, we secondly show how
the proposed model is derived based on the theoretical background to fit with the electric load data.

3.1 Theoretical background

3.1.1 Generalized linear models
The generalized linear models (GLMs) are extensions of multiple linear regression models. In multiple linear regressions,
a dependent variable (response variable) is correlated with multiple variables for quantifying the relationship between
that variable and other several independent variables (predictors). However, the linear regression models only work when
the response variable and the predictors have a linear relationship. The GLMs handle nonlinear relationships by assuming
a link linear relationship. To explain this, 𝕐 is assumed a random variable that is correlated with other random variables
𝕏1,𝕏2, … ,𝕏r . In multiple linear regression, 𝕐 depends on other variables as

𝜇 = X𝛃, (1)

where 𝜇 is the mean of 𝕐 , X is the matrix of all predictors, and 𝛃 is the matrix of regression coefficients. The GLM extends
the linear relationship by

g(𝜇) = X𝛃, (2)

where g() is a monotonic function for transforming the 𝜇i to a unconstrained scale, such as g(𝜇) = log(𝜇) if 𝜇i > 0 or
g(𝜇) = log[𝜇∕(1 − 𝜇)] if 0 < 𝜇i < 1 . In this situation, the variables may follow distributions other than the normal
distribution. That is because the normal approximation of response is accurate only when the variance is very small.
However, for count data and nonnegative data, the variance usually is large and data have more variability. The GLMs
allow modeling of variables that belong to nonlinear families like the exponential family.
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3.1.2 Negative binomial generalized linear model (NBLM)
The NB regression is one of the most famous modeling methods that can handle overdispersion. Other modeling methods,
eg, the Poisson models have been utilized to model count data and assumes equidispersion, which means the variance
and the mean are equal. equidispersion makes the Poisson-based methods inapplicable in the case of overdispersion, ie,
the variance is greater than the mean.13 In addition, the NB reveals the cause-effect relationship among the variables and
how they are correlated.13

In the NB regression that belongs to the generalized linear model (GLM) family, the mean 𝜇 of the response variable
𝕐 is described by an exponential function of a predictor 𝕏 by 𝜇 = e𝕏𝛽 , where 𝛽 is the regression coefficient.13 The link
function g() is selected as natural logarithm (ln) for determining the best fit model. Therefore, when multiple predictors
exist, the response variable 𝕐 is correlated with a set of other random variables 𝕏1, 𝕏2 ,… ,𝕏r, and the equation of the
regression can be written as

ln 𝑦i = 𝛼 +
r∑

𝑗=1
xi𝑗𝛽i𝑗 + 𝜀i, (3)

where 𝛼 is the intercept and 𝜀 is the error, which is independent of all random variables and has a distribution in which the
error mean = 1 and the error variance = 1∕𝜑 . This model assumes that the predictors only affect the response variable.
For handling the overdispersion, the NB employs a parameter 𝜑, which makes the variance 𝜎2 of the dependent variable
𝕐 equal to 𝜇 + 𝜑𝜇2.13

The best fit model is determined by selecting the predictors that are significantly correlated with the response variable,
ie, have significant coefficients. In NB regression, a predictor is significant when its coefficient's P value is less than a
significance level, eg, 5%.13 The significance level is used in step-wise backward or forward elimination algorithms to
estimate the regression coefficients and eliminate insignificant predictors. The coefficients estimation process requires an
optimization method such as Fisher scoring method, which performs the estimation based on maximizing a likelihood
function that is given by

𝑓NB(𝛽, 𝜑) =
n∑

i=1
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, (4)

where Γ is the gamma function and n is the size of data (number of observations).13

The Fisher scoring is a numerical analysis method derived from Newton method and used to solve maximum likelihood
function.36 The Fisher scoring method converges more quickly than other numerical analysis methods on the same data
set. This is because the Fisher scoring method replaces the Hessian matrix by the Fisher information matrix in which
elements consist of the expectation value of the second derivatives of likelihood function toward each parameter.36

However, optimization techniques such as the Fisher scoring method may demand high computational time that can
be reach O(n3).37 To minimize the computational time of coefficients estimation, we use the L-BFGS-B technique that
will be shown in the proposed model section. For multivariate form, the log-likelihood function, which is derived in
Solis-Trapala and Farewell,38 can be used to simplify the estimation process. This log-likelihood function is given by

𝑓NB(𝛽, 𝜑) =
r∑

i=1

⎛⎜⎜⎜⎝
n∑

𝑗=1
𝛽ixi𝑗 ln xi𝑗 + xi𝑗 ln𝜑 + lnΓ

(
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(
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)
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(
1
𝜑

)
⎞⎟⎟⎟⎠ , (5)

where r is the number of predictors, n is the data size, and xij is the the value of the predictor i at time j.38

Modeling large data set such as electrical load requires much computational time because data are big and have large
variability. To minimize the computational demand, only the significant predictors will be considered in the final predic-
tion model, which is the optimized NBLM. The final model is the best fit model because it contains only the significant
predictors and fits the data with the minimum error. The Akaike information criterion (AIC) score and the P value are
measures that can be used to determine the significance of a predictor.13,15 A predictor will be significant if P value is less
than the level of significance, and the predictor significance will increase if its P value decreases.13 The AIC of the entire
model including all significant predictors must be minimized. The AIC is given by

AIC = 2(par) − 2 ln(𝜚(Mi)), (6)
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where Mi is the net model when a new significant predictor is added, 𝜚(Mi) is maximum likelihood value corresponding
to the model Mi, and par is the number of estimated parameters.

The forecasting model requires a model matrix X to contain the data and a model matrix for the coefficient 𝛃. The data
are the input observations of predictors that are used to forecast the future values of the response. The data set is used
to compute the forecasting model matrix Xp. The forecasting matrix maps the model coefficients 𝛃 to the forecast of the
response (𝕐̌) as

𝕐̌ = Xp𝛃, (7)

where the the coefficient matrix 𝛃 is obtained during the training phase.13 The computational time of the NBLM is
expressed by a time complexity function O(n), which shows that the time mainly depends on the data size of the
predictors.13

3.2 The proposed temporal NBLM

Our goal is to determine a forecast model that can address the electric load correlation. Therefore, we formulate the model
that can deal with the important characteristics of the electric load that are overdispersion and autocorrelation.

We firstly focus on the autocorrelation. Let i be the station (transformer) number and let yi,t be the response variable
corresponding to electric current transformer i at time t. The autocorrelation is captured by allowing the electrical current
at each transformer to correlate with itself at previous time segments. In this approach, we can focus on the entire temporal
autocorrelation, t − 1, t − 2, … , t − n . We let T the set of all previous time segments at which data where observed
(1, 2, … ,n). The temporal NBLM regression can be written as

ln 𝑦i,t = 𝛼 +
∑
k∈T

𝛽i,t−k𝑦i,t−k + 𝜀t. (8)

We use the term “temporal” in this paper instead of the autocorrelation term because the model can refer to specific time
segment in the historical data. These time segments can be determined at the training stage by identifying the significant
time segments. In other words, temporal means that the model at time t can correlate with any leading data at time
t− j. We do not use the term autocorrelation to describe our model because autocorrelation means that the model always
correlates with the previous time segment.

The proposed model handles overdispersion by allowing the variance, 𝜎2, to equal 𝜇 + 𝜑𝜇2. It also captures the tem-
poral autocorrelation by incorporating previous time segments in the correlation. The log-likelihood function used by
Hilbe13 has good results when the number of predictors is small. To enable incorporating multiple predictors, we use the
log-likelihood function shown in Equation 5.

The complexity of the proposed model depends on the L-BFGS-B optimization technique, which is an extension of
the limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno). The L-BFGS-B algorithm requires a the negative of the
log-likelihood function to be minimized. We used the negative because the log-likelihood function should be maximized
not minimized. The L-BFGS-B also requires a lower bound and an upper bound for the coefficients, which are −1 and 1,
respectively. The computational time and space of the L-BFGS-B algorithm can be maintained in the linear order, ie, O(n)
where n is the data size.39 These little computational time and memory demands make the proposed temporal NBLM an
efficient model for forecasting future electric load values.

Algorithm 1 of the proposed model works first by defining the input values, which are the response variable y at time t
and the predictors xt−1, xt−2, … ., xt−n. We then define the model as an empty model at the beginning and 𝛼 as the mean
value of the response variable. We also set j as an indicator to the predictors at previous time segments. The core of the
algorithm is finding the significant predictors and their coefficients, which will be used in the forecasting. The for loop
examines the correlation of y with other predictors by finding 𝛽 of that predictor, its P value, and the AIC. If the P value of
the predictor is less than the significance level (0.05), we check the AIC of the model. First, at j = 1 and when the model
is empty, the AIC of the model AICm is set to the computed AIC. Then, the model is updated and the predictor is added
to the model if the new AIC computed for the new predictor at the new j is less than the AICm. The algorithm returns the
final model at the end.
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4 APPLICATION OF THE MODELS

In this section, we present how the proposed model is applied to real data. We also compare the proposed model with
other models using the same data set.

4.1 Electrical load in Jericho city
The data consist of electrical current recorded hourly from 15 transformers in Jericho city between January to
December 2015. A total of 4380 records were collected for each transformer. Figure 1 shows the electric current pattern
for 17 consequent days. Initially, the data are treated by identifying invalid records resulted from the malfunction of the
measurement devices. The percentage of the invalid records is not large and does not affect the accuracy of the model
because the NB-based models are not affected by small number of missing data.13 For example, each transformer has less
than 100 invalid records (2%) per day. The invalid data records are treated by replacing each invalid record by an average
value calculated using an interpolation function. We identify the time of the invalid record; then, we calculate the average
of loads measured at the same time from the previous weekdays.

4.2 Electric current characteristics
The electric load of selected stations during 17 days is represented by a time series. Figure 1 shows the time series for 17
days and Figure 2 shows the time series for a single day. Figure 1 and Figure 2 illustrate that the data have a daily seasonal
pattern, which is repeated periodically. This daily pattern contains different seasons, which can be categorizes as (1) a
low-load season exists in the early morning from 02:00 to 10:00 (8 hours) when the current is less than the daily mean;
(2) a high-load season exists from 18:00 to 01:00 when the current is greater than the daily mean (8 hours); (3) a moderate
load season exits in the durations 01:00-02:00 and 10:00-18:00 (9 hours) when the current is around the mean.
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FIGURE 1 The electric current over 17 days from November 13,
2015, to November 29, 2015, in the Jericho Aqabat Jaber transformer

FIGURE 2 The electric current in November 13, 2015, in the
Jericho Aqabat Jaber transformer

Road segment Aqabat Jaber Sea level 1 Sea level 2 Sea level 3
Daily mean 𝜇 117.9 108.7 64.0 182.3
Daily Var 𝜎2 381.8 194.8 163.5 352.8
Daily dispersion 2.3 2.6 1.8 2.4
Daily max 163 140 100 224
Dail min 87 74 44 137
High season 𝜇 153.0 149.2 87.3 205.9
High season 𝜎2 168.1 181.4 127.7 327.5
High dispersion 2.4 2.3 2.5 2.8
Moderate season 𝜇 125.7 127.6 68.3 189.3
Moderate season 𝜎2 143.1 155.3 98.0 242.6
Moderate dispersion 2.7 2.8 1.9 1.9
Low season 𝜇 101.8 97.8 46.1 151.4
Low season 𝜎2 117.2 152.6 77.3 197.0
Low dispersion 1.9 2.5 1.7 2.0

TABLE 1 The statistical parameters for the four
selected transformers in the three load seasons

Electric load in the data shown in Figure 1 and Figure 2 is temporally autocorrelated and is not stationary because each
season has different length, and within each season the mean and variance have different values and depend on the time
of the day. These characteristics of electric load are common and can be found in electric network worldwide.

Additionally, the electric current has overdispersion because, as shown in Table 1, the variance of the current at each
station is greater than the mean. Overdispersion is determined when the value of dispersion, which is the Pearson statistic
(𝜒2) divided by the degrees of freedom is larger than one.13 In the data set, all load are overdispersed because the dispersion
values are greater than one.

The overdispersion in the electrical current is related to the consumption variations within seasonal daily patterns. The
variations are caused by changing weather conditions, time of the day, place within the city (industry, urban, market),
and life style.
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4.2.1 Training the temporal NBLM
To train the proposed models for the selected transformers, we use data of 10 months recorded from January 2015 to
October 2015. The model for each load season is trained separately using ten-month long three training data sets that are
a set for low load season from 02:00 to 10:00 (8 hours), a set for moderate load season from 10:00-15:00 and 00:00 to 02:00
(7 hours), and a set for high load season from 15:00 to 00:00 (9 hours). Therefore, each season has a different forecast
model. The advantages of this approach is eliminating the outliers and reducing the amount of variability and irregularity
as the electric current does not fluctuate between peak and off-peak. If a single NB-based model is used for the entire day,
the load condition in the larger period will be given more weight, which causes the forecasting model to be accurate only
in the large period.

In all analyses, the statistical confidence interval is set to 95% so the significance level is 5%. The temporal correlation
is modeled using the stepwise forward elimination algorithm. This means the coefficients are estimated at time segments
t−1 , then t−2 , to t−n, and the estimation stops when the temporal correlations becomes insignificant. In our estimation,
we stop at t−6 as shown in the Table 2, which presents the detailed temporal correlation coefficients for the Aqabat Jaber
transformer.

Table 2 shows the coefficients corresponding to each time segment. The segments with P values that are larger than
the significance level (0.05) are insignificant, and the significance increases when the P value decreases. We notice that
the current load data is negative-Binomially and temporally correlated with the previous five segments, which are the
historical data one hour ago to five hours ago.

4.2.2 Training the models of comparison
To evaluate the proposed model, we compare it with classical forecasting methods used in in this domain. We mainly
focus on the ARMA model as in the work of Boroojeni et al,15 the ARIMA as in the work of Williams and Hoel,40 and the
HW as in the work of Taylor.41

The HW model is trained to estimate the coefficients of the level, trend, and seasonality using a daily pattern, which is
one day cycle of length 24. The coefficients are shown in Table 3 for three transformers.

The coefficients can be interpreted to mean that the level of data is positive and has a coefficient equal to 0.57. The
overall trend of the load is constant because the trend coefficient is zero. The high seasonal coefficient expresses that there
are seasonal patterns expressed by one day season with a coefficient =0.73. We also examined one week cycle (weekly
pattern), but this pattern has lower accuracy than the daily pattern.

The ARIMA model coefficients are estimated using one day cycle of length 24. Seasonal differencing is used to remove
nonstationarity. The ARIMA coefficients can form different variations and each variation has a different AIC value. The
ARIMA model usually follows the form ARIMA(p, d, q), where p is the number of autoregressive terms, d is the number of
nonseasonal differences needed for stationarity, and q is the number of lagged forecast errors in the prediction equation.
The best fit model is formed by the variation, which is ARIMA (2, 0, 2)24 because it has the lowest AIC and the lowest
mean square error. The coefficients of the ARIMA are shown in Table 4 for three transformers.

The variation ARIMA (2, 0, 2)24 means the model incorporates two nonseasonal autoregression (AR) components, two
nonseasonal moving average (MA), and one seasonal difference when the model is trained for 24 hours season. For

TABLE 2 The regression
coefficients of the temporal
correlation for the Aqabat Jaber
transformer

Intercepts Low load Moderate load High load
𝜷 P value 𝜷 P value 𝜷 P value

Autocorrelation t − 1 3.37 4.3 × 10 −12 3.45 7.31 × 10 −12 6.35 9.43 × 10 −12

Autocorrelation t − 2 3.10 3.32 × 10 −12 5.34 4.55 × 10 −12 0.82 5.7 × 10 −12

Autocorrelation t − 3 8.20 5.2 × 10 −9 3.44 5.8 ×10 −9 9.32 2.31 × 10 −9

Autocorrelation t − 4 0.883 5.4 × 10 −5 0.649 7.4 × 10 −5 0.56 8.1 × 10 −5

Autocorrelation t − 5 0.044 6.3 × 10 −4 0.071 7.2 × 10 −4 0.084 6.2 × 10 −4

Autocorrelation t − 6 0.011 0.156 0.371 0.097 1.270 0.125
No. of observations 2432 2128 2736
Overdipsersion 𝜑 3.63 2.33 3.18

TABLE 3 The coefficients of the Holt-Winters model Coefficient Aqabat Jaber Sea level 1 Sea level 2
Level 0.57 0.63 0.67
Trend 0 0 0
Season 0.73 0.79 0.86
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Coefficient AR1 AR2 MA1 MA2 AIC
Aqabat Jaber 0.506 0.045 −1.964 1.0 432.64
Sea level 1 0.593 0.181 −1.981 1.0 380.65
Sea level 2 1.136 0.144 −0.058 −0.94 355.85

Abbreviation: AIC, Akaike information criterion.

TABLE 4 The autoregressive integrated moving average coefficients

example, for the station Aqabat Jaber, the two autoregressive components can be written as AR(2): yt = 0.506yt−1 +
0.045yt−2 and the error term for the moving average can be written as MA(2): 𝜖t = −1.964𝜖t−1 + 1.1𝜖t−2.

The ARMA is used after homogenizing the variance and eliminating the nonstationary as in the work of
Boroojeni et al15 but without annual seasonality. The smallest AIC is achieved when the number of daily autoregressive
terms and weekly moving average terms are two and seven, respectively.

4.2.3 Forecasting results
To build the forecasting model, we use the coefficients produced in the training sessions. For example, the coefficients in
Table 2 is used to produce the Aqabat Jaber load forecasting for multiple steps ahead: from one step to 24 steps, and each
step is one hour. Because the coefficients are different, each load season has a different forecasting model. Forecasting
results for other transformers are also shown in Table 5 and Table 6. We compare our model with the HW, ARMA, and
ARIMA for a 10-hour prediction horizon. We use a single forecasting model for HW, ARMA, and ARIMA methods during
all load seasons because these methods are cyclic and require a repeated pattern. We use the root mean square error
(RMSE) and the mean absolute percentage error (MAPE) to compare the accuracy of the forecasting.

Traffic RMSE RMSE RMSE
condition Method Aqabat Jaber Sea level 1 Sea level 2
Low Temporal NBLM 5.47 3.22 2.12
load HW 7.33 5.78 4.67
season ARMA 6.73 4.37 3.39

ARIMA 8.24 6.37 6.02
Average Temporal NBLM 6.22 4.44 3.07
load HW 7.51 7.96 5.98
season ARMA 7.03 6.11 4.92

ARIMA 10.51 9.66 7.74
High Temporal NBLM 7.89 6.08 4.12
load HW 11.4 9.77 7.22
season ARMA 8.45 7.50 5.93

ARIMA 12.45 11.21 9.50

Abbreviations: ARMA, autoregressive moving average; HW, Holt-Winters; NBLM, nega-
tive binomial linear model.

TABLE 5 The root mean square error (RMSE) values
for different models during the three load seasons

Traffic MAPE, % MAPE, % MAPE, %
condition Method Aqabat Jaber Sea level 1 Sea level 2
Low Temporal NBLM 1.34 1.68 1.41
load HW 3.25 3.51 3.52
season ARMA 2.11 2.97 2.85

ARIMA 6.20 5.31 4.65
Average Temporal NBLM 3.68 2.05 2.61
load HW 5.17 3.36 4.12
season ARMA 4.84 2.91 3.70

ARIMA 6.91 4.58 5.94
High Temporal NBLM 4.64 2.41 2.96
load HW 5.77 3.84 4.08
season ARMA 5.24 3.25 3.48

ARIMA 8.15 5.66 5.66

Abbreviations: ARMA, autoregressive moving average; HW, Holt-Winters; NBLM, nega-
tive binomial linear model.

TABLE 6 The mean absolute percentage error (MAPE)
values for different models during the three load seasons
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FIGURE 3 The prediction of electric load for the 10-hour horizon
during the low-load season in the Jericho Aqabat Jaber transformer.
ARMA, autoregressive moving average; HW, Holt-Winters; NBLM,
negative binomial linear model

FIGURE 4 The prediction of electric load for the 10-hour horizon
during the moderate-load season in the Jericho Aqabat Jaber
transformer. ARMA, autoregressive moving average; HW,
Holt-Winters; NBLM, negative binomial linear model

FIGURE 5 The prediction of electric load for the 10-hour horizon
during the high-load season in the Jericho Aqabat Jaber transformer.
ARMA, autoregressive moving average; HW, Holt-Winters; NBLM,
negative binomial linear model

Table 5 and Table 6 present RMSE and the MAPE of the models for examined transformers during the three seasons for
a 10-hour horizon. The results of three models during the three load seasons are shown in Figure 3, Figure 4, and Figure 5.

4.2.4 Time complexity results
We also measure the computational demand of the proposed model. We selected the high load season because it has the
biggest data volume, which is 2736. The model is tested on Intel CPU of 2.8 GHz, 64-bit operating system, and 16 GB of
RAM. We notice that the NBLM is faster than the others and requires little time during the training stage for optimizing
the NBLM regression coefficients and during the forecasting stage, as shown in Table 7.

As our data size is not so big and collected from small scale electrical network, we multiplied the size of data by a factor
F=(10, 20, 30, … ,1000) to simulate the big load data and test the behavior of the model at these data size. We found that
the NBLM model still outperforms others.
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Model Training (s) Forecasting (s)
NBLM 2.4 0.1
ARMA 6.4 3.2
ARIMA 7.2 4.8
HW 6.4 0.8

Abbreviations: ARIMA, autoregressive integrated
moving average; ARMA, autoregressive moving aver-
age; HW, Holt-Winters; NBLM, negative binomial
linear model.

TABLE 7 The measured computation time for different models during the training and
forecasting stages

5 DISCUSSION

In Table 5 and Table 6, the RMSE and MAPE values of the proposed model are less than HW, ARMA, and ARIMA, which
implies that the proposed model is more accurate than the others. The plots in Figure 3, Figure 4, and Figure 5 also
emphasize that the temporal NBLM regression has better performance than the other models. We also notice that the
number of the missing values and the way we treated them do not affect the accuracy of the temporal NBLM.

As stated in other works,7-9 handling the nonlinearity and the high variance of the electric load by the forecasting
model gives more accurate results. This is clear in our results, as the proposed temporal NBLM handles the overdis-
persion, ie, the high variance, and therefore, its forecasting accuracy is high. On the other hand, the HW, ARMA, and
ARIMA do not handle the overdispersion, and consequently, they have lower accuracy than the proposed model. Although
the ARIMA and ARMA model were modified by removing the nonstationary, the proposed model still outperforms
these models.

The temporal characteristic of the proposed model allows to incorporate significant historical data. In the used data
set, the previous five segments (five hours) are used in the forecasting because only these hours were identified as signif-
icant. The temporal correlation with the previous five hours is enough to produce high accuracy because the daily load
season was divided into three intraday seasons that are low, moderate, and high electric load. By this, the variance can be
guaranteed to be lower than the variance of a complete daily season, as in Table 1, and therefore, the forecast accuracy is
increased. The other models still do not perform well even during each load season.

Regarding the computational time, the proposed temporal NBLM also outperforms the ARMA, ARIMA, and HW during
the training stage and the forecasting stage. The important point is that the training stage, which costs more time than
the forecasting, depends on the data during the load season and every load season has different coefficients. It is found
that the NBLM learns the pattern in each season quickly particularly because the variance within one season is lower
than one day variance as in Table 1. In addition, the forecasting stages are not largely affected by the data size because
the coefficients catch the pattern by referring to the previous five time segments. This makes the forecast run quickly
with low computation demand, in contrast to the other models, which require complete seasons (cycles) of data for the
forecast. In a real-time scenario, the model maintains adjusting its coefficients to include the previous five hours and uses
the data in these hours for the forecasting.

6 CONCLUSION

Internet of energy (IoE) requires MPC to allow dynamic and distributed balance of electric supply and demand. The
short-term load forecasting is a major component of the MPC and it has to be accurate and efficient to achieve effective
energy management. Accuracy and efficiency are affected by the characteristics of electrical load, such as temporal auto-
correlation and seasonal patterns. Additionally, electrical load exhibits overdispersion that is caused by the high and rapid
fluctuation in the electrical network and consumption rates. Overdispersion affects the forecast accuracy and requires
special treatments during building the forecast model. Therefore, we have proposed a short-term forecasting model that
is based on NB, which handles overdispersion. The model can also capture the trend of the load by including the autocor-
relation component in the explanatory variables. To address the seasonal pattern, we divide one day load season into low,
moderate, and high load. A different temporal NBLM is used for each load season. The proposed model is accurate and
efficient during all electrical load seasons as it produces accurate results in small computation time, and it outperforms
other models used in this field.
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In the future work, the temporal NBLM will be used as a load forecasting component in the microgrid, which will be
built in Jericho. The microgrid will be based on IoE and IoT technologies. For achieving the best use of IoT, we will fol-
low the approach in other works.42-44 A cloud-based system will be built to ensure the success of the big data processing
and hosting. The cloud system also allows other stakeholders mainly electric companies to participate in the system and
utilize the smart services as in other works.45-47 By the IoE system, utilities will be able to manage and operate all smart
device-related processes and data acquisition systems, communicate with all grid devices, receive problem notifications,
and manage new metering points. The security of the system can not be neglected so we will employ different approaches
to achieve secure cloud and IoT services as in the work of Ghafir et al.48 These developments will also motivate us to inves-
tigate other forecasting-related issues, such as the spatial correlation of one station with other stations, the micro-scale
forecasting for small urban areas, and the effect of other conditions, eg, weather, on the forecast. We will utilize machine
learning methods derived for abnormal conditions as in the work of Khalaf et al49 and Farhan et al.50
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