Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/1166
cc-by
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbu-AS'AD, Ata-
dc.date.accessioned2025-12-02T07:30:44Z-
dc.date.available2025-12-02T07:30:44Z-
dc.date.issued2025-10-25-
dc.identifier.issn2406-0682 (Online), ISSN 0025–5165 (Print)-
dc.identifier.urihttps://scholar.ptuk.edu.ps/handle/123456789/1166-
dc.description.abstractIn this paper, we show the convergence of matrix series and the conditions for their convergence by finding an upper bound for some specific matrix inequalities. Finally, we introduce a new form of arithmetic-geometric matrix series and analyze their convergence.en_US
dc.language.isoenen_US
dc.publisherDruštvo matematičara Srbijeen_US
dc.subjectHarmonic series; condition number of a matrix; Hilbert-Schmidt norm; norm inequality; positive definite matrix; singular value; spectral norm; matrix conen_US
dc.titleON SOME MATRIX INEQUALITIESen_US
dc.typeArticleen_US
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
mv2023_059 (1).pdfpaper309.68 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.