Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/203
cc-by
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNazzal, Khalida-
dc.contributor.authorGhanem, Manal-
dc.date.accessioned2019-01-23T20:04:13Z-
dc.date.available2019-01-23T20:04:13Z-
dc.date.issued2012-01-30-
dc.identifier.citationInternational Journal of Combinatorics Volume 2012, Article ID 957284, 13 pages http://dx.doi.org/10.1155/2012/957284en_US
dc.identifier.urihttps://scholar.ptuk.edu.ps/handle/123456789/203-
dc.descriptionArticleen_US
dc.description.abstractLet be the zero divisor graph for the ring of the Gaussian integers modulo . Several properties of the line graph of , are studied. It is determined when is Eulerian, Hamiltonian, or planer. The girth, the diameter, the radius, and the chromatic and clique numbers of this graph are found. In addition, the domination number of is given when is a power of a prime. On the other hand, several graph invariants for are also determined.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Combinatoricsen_US
dc.relation.ispartofseries2012;13-
dc.subjectzero divisor graph, ring of the Gaussian integers moduloen_US
dc.title. On the Line Graph of the Zero Divisor Graph for the Ring of Gaussian Integers modulo n.en_US
dc.typeArticleen_US
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
957284.pdfMain article1.91 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.