Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/626
cc-by
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaleanu, D-
dc.contributor.authorJajarmi, A-
dc.contributor.authorAsad, J. H-
dc.date.accessioned2019-05-27T08:53:02Z-
dc.date.available2019-05-27T08:53:02Z-
dc.date.issued2018-09-
dc.identifier.citationBaleanu, D., Jajarmi, A. Asad, J.H.,(2018). The fractional model of spring pendulum: New features within different kernels. Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science 19(3), pp. 447-454en_US
dc.identifier.issn14549069-
dc.identifier.urihttps://scholar.ptuk.edu.ps/handle/123456789/626-
dc.description.abstractIn this work, new aspects of the fractional calculus (FC) are examined for a model of spring pendulum in fractional sense. First, we obtain the classical Lagrangian of the model, and as a result, we derive the classical Euler-Lagrange equations of the motion. Second, we generalize the classical Lagrangian to fractional case and derive the fractional Euler-Lagrange equations in terms of fractional derivatives with singular and nonsingular kernels, respectively. Finally, we provide the numerical solution of these equations within two fractional operators for some fractional orders and initial conditions. Numerical simulations verify that taking into account the recently features of the FC provides more realistic models demonstrating hidden aspects of the real-world phenomenaen_US
dc.language.isoenen_US
dc.subjectSpring pendulumen_US
dc.subjectEuler-Lagrange equationen_US
dc.subjectnonsingular kernelen_US
dc.subjectfractional derivativeen_US
dc.titleThe fractional model of spring pendulum: New features within different kernelsen_US
dc.typeArticleen_US
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
41- The Fractional Model of Spring Pendulum- New Features within Different Kernels.pdf876.57 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.