Please use this identifier to cite or link to this item:
https://scholar.ptuk.edu.ps/handle/123456789/741
cc-by
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abu-Asa'd, Ata | - |
dc.contributor.author | Hirzallah, omar | - |
dc.date.accessioned | 2019-12-03T11:27:35Z | - |
dc.date.available | 2019-12-03T11:27:35Z | - |
dc.date.issued | 2019-11-12 | - |
dc.identifier.citation | Abu-As'ad, A., & Hirzallah, O. (2019). On the Convexity of Functions. Filomat, 33(2406), 3373–3381. | en_US |
dc.identifier.issn | 2406-0933 | - |
dc.identifier.uri | https://scholar.ptuk.edu.ps/handle/123456789/741 | - |
dc.description | This article interest on the relation of matrices under effect of convex function so we make proof of some inequalities study these relation | en_US |
dc.description.abstract | Let A,B, and X be bounded linear operators on a separable Hilbert space such that A,B are positive, X≥γI, for some positive real number γ, and α∈[0,1]. Among other results, it is shown that if f(t) is an increasing function on [0,∞) with f(0)=0 such that f(√t) is convex, then γ|||f(αA+(1-α)B)+f(β|A-B|)|||≤|||αf(A)X+(1-α)Xf(B)||| for every unitarily invariant norm, where β=min(α,1-α). Applications of our results are given. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Faculty of Sciences and Mathematics, University of Nis, Serbia | en_US |
dc.relation.ispartofseries | Vol 33, No 12 (2019);3773–3781 | - |
dc.subject | Unitarily invariant norm | en_US |
dc.subject | compact operator | en_US |
dc.subject | positive operator | en_US |
dc.subject | singular value | en_US |
dc.subject | , Schatten p-nor | en_US |
dc.subject | Hilbert-Schmidt norm | en_US |
dc.subject | convex functions | en_US |
dc.subject | eigenvalues | en_US |
dc.title | On the Convexity of Functions | en_US |
dc.type | Article | en_US |
Appears in Collections: | Applied science faculty |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
on convexity functions.pdf | Matrix analysis | 244.16 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.