Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/741
cc-by
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbu-Asa'd, Ata-
dc.contributor.authorHirzallah, omar-
dc.date.accessioned2019-12-03T11:27:35Z-
dc.date.available2019-12-03T11:27:35Z-
dc.date.issued2019-11-12-
dc.identifier.citationAbu-As'ad, A., & Hirzallah, O. (2019). On the Convexity of Functions. Filomat, 33(2406), 3373–3381.en_US
dc.identifier.issn2406-0933-
dc.identifier.urihttps://scholar.ptuk.edu.ps/handle/123456789/741-
dc.descriptionThis article interest on the relation of matrices under effect of convex function so we make proof of some inequalities study these relationen_US
dc.description.abstractLet A,B, and X be bounded linear operators on a separable Hilbert space such that A,B are positive, X≥γI, for some positive real number γ, and α∈[0,1]. Among other results, it is shown that if f(t) is an increasing function on [0,∞) with f(0)=0 such that f(√t) is convex, then γ|||f(αA+(1-α)B)+f(β|A-B|)|||≤|||αf(A)X+(1-α)Xf(B)||| for every unitarily invariant norm, where β=min(α,1-α). Applications of our results are given.en_US
dc.language.isoenen_US
dc.publisherFaculty of Sciences and Mathematics, University of Nis, Serbiaen_US
dc.relation.ispartofseriesVol 33, No 12 (2019);3773–3781-
dc.subjectUnitarily invariant normen_US
dc.subjectcompact operatoren_US
dc.subjectpositive operatoren_US
dc.subjectsingular valueen_US
dc.subject, Schatten p-noren_US
dc.subjectHilbert-Schmidt normen_US
dc.subjectconvex functionsen_US
dc.subjecteigenvaluesen_US
dc.titleOn the Convexity of Functionsen_US
dc.typeArticleen_US
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
on convexity functions.pdfMatrix analysis244.16 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.