Please use this identifier to cite or link to this item:
https://scholar.ptuk.edu.ps/handle/123456789/828
cc-by
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Daraghmi, Yousef | - |
dc.contributor.author | Daraghmi, Eman | - |
dc.contributor.author | Daadoo, Motaz | - |
dc.contributor.author | Alsadi, Samer | - |
dc.date.accessioned | 2021-09-13T10:36:26Z | - |
dc.date.available | 2021-09-13T10:36:26Z | - |
dc.date.issued | 2020-05-01 | - |
dc.identifier.citation | Yousef Daraghmi, Eman Daraghmi, Motaz Daadoo, Samer Alsadi(2020).Forecasting for smart energy: an accurate and efficient negative binomial additive model.20(2),1000-1006. | en_US |
dc.identifier.issn | 2502-4752 | - |
dc.identifier.uri | https://scholar.ptuk.edu.ps/handle/123456789/828 | - |
dc.description.abstract | Smart energy requires accurate and effificient short-term electric load forecasting to enable effificient energy management and active real-time power control. Forecasting accuracy is inflfluenced by the char acteristics of electrical load particularly overdispersion, nonlinearity, autocorrelation and seasonal patterns. Although several fundamental forecasting methods have been proposed, accurate and effificient forecasting methods that can consider all electric load characteristics are still needed. Therefore, we propose a novel model for short-term electric load forecasting. The model adopts the negative binomial additive models (NBAM) for handling overdispersion and capturing the nonlinearity of electric load. To address the season ality, the daily load pattern is classifified into high, moderate, and low seasons, and the autocorrelation of load is modeled separately in each season. We also consider the effificiency of forecasting since the NBAM captures the behavior of predictors by smooth functions that are estimated via a scoring algorithm which has low computational demand. The proposed NBAM is applied to real-world data set from Jericho city, and its accuracy and effificiency outperform those of the other models used in this context. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Indonesian Journal of Electrical Engineering and Computer Science | en_US |
dc.relation.ispartofseries | 20(2);,1000-1006. | - |
dc.subject | Negative binomial additive | en_US |
dc.subject | models | en_US |
dc.subject | Nonlinearity | en_US |
dc.subject | Overdispersion | en_US |
dc.subject | Seasonal patterns | en_US |
dc.subject | Short-term load forecasting | en_US |
dc.subject | Smart energy | en_US |
dc.subject | Temporal autocorrelation | en_US |
dc.title | Forecasting for smart energy: an accurate and efficient negative binomial additive model | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.11591 | - |
Appears in Collections: | Engineering and Technology Faculty |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Forecasting_for_smart_energy_an_accurate_and_effif.pdf | 326.95 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.