Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/202
cc-by
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSander, Torsten-
dc.contributor.authorNazzal, Khalida-
dc.date.accessioned2019-01-23T19:55:19Z-
dc.date.available2019-01-23T19:55:19Z-
dc.date.issued2014-01-30-
dc.identifier.citation, and Khalida Nazzal . Transactions on Combinatorics Vol. (2014). 3 No. 3, 11-20en_US
dc.identifier.urihttps://scholar.ptuk.edu.ps/handle/123456789/202-
dc.descriptionArticleen_US
dc.description.abstractLet R be a commutative ring with zero-divisor set Z(R)‎. ‎The total graph of R‎, ‎denoted by‎ ‎T(Γ(R))‎, ‎is the simple (undirected) graph with vertex set R where two distinct vertices are‎ ‎adjacent if their sum lies in Z(R)‎. ‎This work considers minimum zero-sum k-flows for T(Γ(R))‎. ‎Both for |R| even and the case when |R| is odd and Z(G) is an ideal of R‎ ‎it is shown that T(Γ(R)) has a zero-sum 3-flow‎, ‎but no zero-sum 2-flow‎. ‎As a step towards resolving the remaining case‎, ‎the total graph T(Γ(Zn))‎ ‎for the ring of integers modulo n is considered‎. ‎Here‎, ‎minimum zero-sum k-flows are obtained for n=pr and n=prqs (where p‎ ‎and q are primes‎, ‎r and s are positive integers)‎. ‎Minimum zero-sum k-flows‎ ‎as well as minimum constant-sum k-flows in regular graphs are also investigated‎.en_US
dc.language.isoenen_US
dc.publisherTransactions on Combinatoricsen_US
dc.relation.ispartofseries3 No. 3;11-20-
dc.subjectConstant-sum k-flow; minimum flow; the ring of integers modulo n; total graph of a commutative ring; zero-sum k-flow Main Subjectsen_US
dc.titleMinimum Flows in the Total Graph of a Commutative Ringen_US
dc.typeArticleen_US
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
560254153d38ef1a1f5b472f831c835f.pdfMain article4.97 MBAdobe PDFThumbnail
View/Open
TOC_2014 Autumn_Vol 3_Issue 3_Pages 11-20.pdf234.45 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.