Please use this identifier to cite or link to this item:
https://scholar.ptuk.edu.ps/handle/123456789/269 cc-by
Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Abu-Asa'd, Ata | - |
| dc.contributor.author | Omar, Hirzallah | - |
| dc.date.accessioned | 2019-04-18T08:47:34Z | - |
| dc.date.available | 2019-04-18T08:47:34Z | - |
| dc.date.issued | 2017-01 | - |
| dc.identifier.citation | INEQUALITIES FOR CERTAIN POWERS OF POSITIVE DEFINITE MATRICES | en_US |
| dc.identifier.uri | https://scholar.ptuk.edu.ps/handle/123456789/269 | - |
| dc.description | Mathematics subject classification (2010): 15A18, 15A42, 15A45, 15A60, 26C10. Keywords and phrases: Convex function, Hermitian matrix, positive semidefinite matrix, positive definite matrix, singular value, unitarily invariant norm. c , Zagreb Paper MIA-20-02 1 | en_US |
| dc.description.abstract | Abstract. We give several matrix versions of the inequalities a^b + b^a > 1 and a^a > e^(−e^−1) for positive scalars a and b. For instance, for all positive definite matrices A,B, any Hermitian matrix X, and any unitarily invariant norm, |||A^bX +XB^a|||>=|||X||| ,where a and b are the smallest eigenvalues of A and B, respectively | en_US |
| dc.language.iso | en_US | en_US |
| dc.publisher | Mathematical Inequalities and application | en_US |
| dc.relation.ispartofseries | MIA;doi:10.7153/mia-20-02 | - |
| dc.subject | Matrix Analysis | en_US |
| dc.title | Some inequalities for powers of positive definite matrices | en_US |
| dc.title.alternative | Inequalities for contraction matrices | en_US |
| dc.type | Article | en_US |
| Appears in Collections: | Applied science faculty | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Research_119314_Some Inequalities Fo.pdf | Matrix Analysis | 118 kB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
