Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/269
cc-by
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbu-Asa'd, Ata-
dc.contributor.authorOmar, Hirzallah-
dc.date.accessioned2019-04-18T08:47:34Z-
dc.date.available2019-04-18T08:47:34Z-
dc.date.issued2017-01-
dc.identifier.citationINEQUALITIES FOR CERTAIN POWERS OF POSITIVE DEFINITE MATRICESen_US
dc.identifier.urihttps://scholar.ptuk.edu.ps/handle/123456789/269-
dc.descriptionMathematics subject classification (2010): 15A18, 15A42, 15A45, 15A60, 26C10. Keywords and phrases: Convex function, Hermitian matrix, positive semidefinite matrix, positive definite matrix, singular value, unitarily invariant norm. c , Zagreb Paper MIA-20-02 1en_US
dc.description.abstractAbstract. We give several matrix versions of the inequalities a^b + b^a > 1 and a^a > e^(−e^−1) for positive scalars a and b. For instance, for all positive definite matrices A,B, any Hermitian matrix X, and any unitarily invariant norm, |||A^bX +XB^a|||>=|||X||| ,where a and b are the smallest eigenvalues of A and B, respectivelyen_US
dc.language.isoen_USen_US
dc.publisherMathematical Inequalities and applicationen_US
dc.relation.ispartofseriesMIA;doi:10.7153/mia-20-02-
dc.subjectMatrix Analysisen_US
dc.titleSome inequalities for powers of positive definite matricesen_US
dc.title.alternativeInequalities for contraction matricesen_US
dc.typeArticleen_US
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
Research_119314_Some Inequalities Fo.pdfMatrix Analysis118 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.