Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/643
Title: Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases.
Authors: Saleh A, Friesen J, Baumeister S, Gross U, Bohne W.
Keywords: Toxoplasma gondii, RT-PCR, Electron Transport Chain, Alternative NADH Dehydrogenase, HDQ
Issue Date: 5-Apr-2007
Publisher: Antimicrob Agents Chemother., Washington, American Society for Microbiolog
Citation: Saleh A, Friesen J, Baumeister S, Gross U, Bohne W. Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases. Antimicrob Agents Chemother. 2007;51(4):1217–22. 10.1128/AAC.00895-06
Abstract: Both apicomplexan parasites Toxoplasma gondii and Plasmodium falciparum lack type I NADH dehydrogenases (complex I) but instead carry alternative (type II) NADH dehydrogenases, which are absent in mammalian cells and are thus considered promising antimicrobial drug targets. The quinolone-like compound 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ) was recently described as a high-affinity inhibitor of fungal alternative NADH dehydrogenases in enzymatic assays, probably by interfering with the ubiquinol binding site of the enzyme. We describe here that HDQ effectively inhibits the replication rates of P. falciparum and T. gondii in tissue culture. The 50% inhibitory concentration (IC50) of HDQ for T. gondii was determined to be 2.4+/-0.3 nM with a growth assay based on vacuole sizes and 3.7+/-1.4 nM with a growth assay based on beta-galactosidase activity. Quantification of the P. falciparum replication rate using a fluorometric assay revealed an IC50 of 14.0+/-1.9 nM. An important feature of the HDQ structure is the length of the alkyl side chain at position 2. Derivatives with alkyl side chains of C6, C8, C12 (HDQ), and C14 all displayed excellent anti-T. gondii activity, while a C5 derivative completely failed to inhibit parasite replication. A combined treatment of T. gondii-infected cells with HDQ and the antimalarial agent atovaquone, which blocks the ubiquinol oxidation site of cytochrome b in complex III, resulted in synergism, with a calculated fractional inhibitory concentration of 0.16 nM. Interference of the mitochondrial ubiquinone/ubiquinol cycle at two different locations thus appears to be a highly effective strategy for inhibiting parasite replication. HDQ and its derivatives, particularly in combination with atovaquone, represent promising compounds with a high potential for antimalarial and antitoxoplasmal therapy.
Description: Research article in developing drugs for fighting malaria and toxoplasmosis
URI: https://scholar.ptuk.edu.ps/handle/123456789/643
ISSN: 0066-4804 (Print)
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
Antimicrobial Agents and Chemotherapy-2007-Saleh-1217.full.pdf194.52 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.