Please use this identifier to cite or link to this item:
https://scholar.ptuk.edu.ps/handle/123456789/626
cc-by
Title: | The fractional model of spring pendulum: New features within different kernels |
Authors: | Baleanu, D Jajarmi, A Asad, J. H |
Keywords: | Spring pendulum;Euler-Lagrange equation;nonsingular kernel;fractional derivative |
Issue Date: | Sep-2018 |
Citation: | Baleanu, D., Jajarmi, A. Asad, J.H.,(2018). The fractional model of spring pendulum: New features within different kernels. Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science 19(3), pp. 447-454 |
Abstract: | In this work, new aspects of the fractional calculus (FC) are examined for a model of spring pendulum in fractional sense. First, we obtain the classical Lagrangian of the model, and as a result, we derive the classical Euler-Lagrange equations of the motion. Second, we generalize the classical Lagrangian to fractional case and derive the fractional Euler-Lagrange equations in terms of fractional derivatives with singular and nonsingular kernels, respectively. Finally, we provide the numerical solution of these equations within two fractional operators for some fractional orders and initial conditions. Numerical simulations verify that taking into account the recently features of the FC provides more realistic models demonstrating hidden aspects of the real-world phenomena |
URI: | https://scholar.ptuk.edu.ps/handle/123456789/626 |
ISSN: | 14549069 |
Appears in Collections: | Applied science faculty |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
41- The Fractional Model of Spring Pendulum- New Features within Different Kernels.pdf | 876.57 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.