Please use this identifier to cite or link to this item: https://scholar.ptuk.edu.ps/handle/123456789/269
cc-by
Title: Some inequalities for powers of positive definite matrices
Other Titles: Inequalities for contraction matrices
Authors: Abu-Asa'd, Ata
Omar, Hirzallah
Keywords: Matrix Analysis
Issue Date: Jan-2017
Publisher: Mathematical Inequalities and application
Citation: INEQUALITIES FOR CERTAIN POWERS OF POSITIVE DEFINITE MATRICES
Series/Report no.: MIA;doi:10.7153/mia-20-02
Abstract: Abstract. We give several matrix versions of the inequalities a^b + b^a > 1 and a^a > e^(−e^−1) for positive scalars a and b. For instance, for all positive definite matrices A,B, any Hermitian matrix X, and any unitarily invariant norm, |||A^bX +XB^a|||>=|||X||| ,where a and b are the smallest eigenvalues of A and B, respectively
Description: Mathematics subject classification (2010): 15A18, 15A42, 15A45, 15A60, 26C10. Keywords and phrases: Convex function, Hermitian matrix, positive semidefinite matrix, positive definite matrix, singular value, unitarily invariant norm. c , Zagreb Paper MIA-20-02 1
URI: https://scholar.ptuk.edu.ps/handle/123456789/269
Appears in Collections:Applied science faculty

Files in This Item:
File Description SizeFormat 
Research_119314_Some Inequalities Fo.pdfMatrix Analysis118 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.